Adversarial Segmentation Loss for Sketch Colorization
Github: https://github.com/giddyyupp/AdvSegLoss
Dataset: https://github.com/giddyyupp/AdvSegLoss/blob/master/docs/datasets.md
Paper: https://arxiv.org/abs/2102.06192v1
@ArtificialIntelligencedl
Github: https://github.com/giddyyupp/AdvSegLoss
Dataset: https://github.com/giddyyupp/AdvSegLoss/blob/master/docs/datasets.md
Paper: https://arxiv.org/abs/2102.06192v1
@ArtificialIntelligencedl
A new open data set for multilingual speech research
https://ai.facebook.com/blog/a-new-open-data-set-for-multilingual-speech-research/
Github: https://github.com/facebookresearch/wav2letter
Paper: https://arxiv.org/abs/2012.03411
@ArtificialIntelligencedl
https://ai.facebook.com/blog/a-new-open-data-set-for-multilingual-speech-research/
Github: https://github.com/facebookresearch/wav2letter
Paper: https://arxiv.org/abs/2012.03411
@ArtificialIntelligencedl
💨 GraphGallery: A Platform for Fast Benchmarking and Easy Development of Graph Neural Networks Based Intelligent Software
Github: https://github.com/EdisonLeeeee/GraphGallery
Paper: https://arxiv.org/abs/2102.07933v1
@ArtificialIntelligencedl
Github: https://github.com/EdisonLeeeee/GraphGallery
Paper: https://arxiv.org/abs/2102.07933v1
@ArtificialIntelligencedl
Free AI and ML Courses by Google, Microsoft, & Stanford University
https://www.theinsaneapp.com/2020/08/free-artificial-intelligence-and-machine-learning-courses.html
@ArtificialIntelligencedl
https://www.theinsaneapp.com/2020/08/free-artificial-intelligence-and-machine-learning-courses.html
@ArtificialIntelligencedl
Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics
Github: https://github.com/mims-harvard/TDC
Paper: https://arxiv.org/abs/2102.09548
Datasets: https://tdcommons.ai/
@ArtificialIntelligencedl
Github: https://github.com/mims-harvard/TDC
Paper: https://arxiv.org/abs/2102.09548
Datasets: https://tdcommons.ai/
@ArtificialIntelligencedl
👍1
Rectified Linear Unit For Artificial Neural Networks - Part 1 Regression
https://www.nbshare.io/notebook/584445049/Rectified-Linear-Unit-For-Artificial-Neural-Networks-Part-1-Regression/
@ArtificialIntelligencedl
https://www.nbshare.io/notebook/584445049/Rectified-Linear-Unit-For-Artificial-Neural-Networks-Part-1-Regression/
@ArtificialIntelligencedl
Powerful Exploratory Data Analysis in just two lines of code
https://www.kdnuggets.com/2021/02/powerful-exploratory-data-analysis-sweetviz.html
@ArtificialIntelligencedl
https://www.kdnuggets.com/2021/02/powerful-exploratory-data-analysis-sweetviz.html
@ArtificialIntelligencedl
KDnuggets
Powerful Exploratory Data Analysis in just two lines of code - KDnuggets
EDA is a fundamental early process for any Data Science investigation. Typical approaches for visualization and exploration are powerful, but can be cumbersome for getting to the heart of your data. Now, you can get to know your data much faster with only…
CSTR: A Classification Perspective on Scene Text Recognition
Github: https://github.com/Media-Smart/vedastr
Paper: https://arxiv.org/abs/2102.10884v1
@ArtificialIntelligencedl
Github: https://github.com/Media-Smart/vedastr
Paper: https://arxiv.org/abs/2102.10884v1
@ArtificialIntelligencedl
A Relational Tsetlin Machine with Applications to Natural Language Understanding
Github: https://github.com/cair/pyTsetlinMachine
Paper: https://arxiv.org/abs/2102.10952v1
@ArtificialIntelligencedl
Github: https://github.com/cair/pyTsetlinMachine
Paper: https://arxiv.org/abs/2102.10952v1
@ArtificialIntelligencedl
Evolution Strategies From Scratch in Python
https://machinelearningmastery.com/evolution-strategies-from-scratch-in-python/
@ArtificialIntelligencedl
https://machinelearningmastery.com/evolution-strategies-from-scratch-in-python/
@ArtificialIntelligencedl
Simple multi-dataset detection
Github: https://github.com/xingyizhou/UniDet
Paper: https://arxiv.org/abs/2102.13086v1
@ArtificialIntelligencedl
Github: https://github.com/xingyizhou/UniDet
Paper: https://arxiv.org/abs/2102.13086v1
@ArtificialIntelligencedl
The Absolute Guide to TensorFlow
https://blog.paperspace.com/absolute-guide-to-tensorflow/
@ArtificialIntelligencedl
https://blog.paperspace.com/absolute-guide-to-tensorflow/
@ArtificialIntelligencedl
Paperspace by DigitalOcean Blog
The Absolute Guide to TensorFlow | Paperspace Blog
In this complete guide to TensorFlow, we'll be covering topics like accelerators, tensors, constants, variables, layers, models, and more.
Are You Still Using Pandas to Process Big Data in 2021? Here are two better options
https://www.kdnuggets.com/2021/03/pandas-big-data-better-options.html
@ArtificialIntelligencedl
https://www.kdnuggets.com/2021/03/pandas-big-data-better-options.html
@ArtificialIntelligencedl
APGD for sparse adversarial attacks on image classifiers
Github: https://github.com/fra31/auto-attack
Paper: https://arxiv.org/abs/2103.01208v1
Github: https://github.com/fra31/auto-attack
Paper: https://arxiv.org/abs/2103.01208v1
GitHub
GitHub - fra31/auto-attack: Code relative to "Reliable evaluation of adversarial robustness with an ensemble of diverse parameter…
Code relative to "Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks" - fra31/auto-attack
GANsformer: Generative Adversarial Transformers
Github: https://github.com/dorarad/gansformer
Paper: https://arxiv.org/abs/2103.01209v2
@ArtificialIntelligencedl
Github: https://github.com/dorarad/gansformer
Paper: https://arxiv.org/abs/2103.01209v2
@ArtificialIntelligencedl
PyTorch 1.8 Release, including Compiler and Distributed Training updates, and New Mobile Tutorials
https://pytorch.org/blog/pytorch-1.8-released/
@ArtificialIntelligencedl
https://pytorch.org/blog/pytorch-1.8-released/
@ArtificialIntelligencedl
PyTorch
PyTorch 1.8 Release, including Compiler and Distributed Training updates, and New Mobile Tutorials
We are excited to announce the availability of PyTorch 1.8. This release is composed of more than 3,000 commits since 1.7. It includes major updates and new features for compilation, code optimization, frontend APIs for scientific computing, and AMD ROCm…
Speeding up Scikit-Learn Model Training
https://www.kdnuggets.com/2021/03/speed-up-scikit-learn-model-training.html
@ArtificialIntelligencedl
https://www.kdnuggets.com/2021/03/speed-up-scikit-learn-model-training.html
@ArtificialIntelligencedl
KDnuggets
Speeding up Scikit-Learn Model Training - KDnuggets
If your scikit-learn models are taking a bit of time to train, then there are several techniques you can use to make the processing more efficient. From optimizing your model configuration to leveraging libraries to speed up training through parallelization…
Attention Mechanism Exploits Temporal Contexts: Real-time 3D Human Pose Reconstruction (CVPR 2020 Oral)
https://sites.google.com/a/udayton.edu/jshen1/cvpr2020
Github: https://github.com/lrxjason/Attention3DHumanPose
Paper: https://arxiv.org/abs/2103.03170v1
@ArtificialIntelligencedl
https://sites.google.com/a/udayton.edu/jshen1/cvpr2020
Github: https://github.com/lrxjason/Attention3DHumanPose
Paper: https://arxiv.org/abs/2103.03170v1
@ArtificialIntelligencedl
TorchDrift: drift detection for PyTorch
https://torchdrift.org/
Github: https://github.com/torchdrift/torchdrift/
Example: https://torchdrift.org/notebooks/drift_detection_on_images.html
@ArtificialIntelligencedl
https://torchdrift.org/
Github: https://github.com/torchdrift/torchdrift/
Example: https://torchdrift.org/notebooks/drift_detection_on_images.html
@ArtificialIntelligencedl
Improving Graph Convolutional Networks with Lessons from Transformers
https://blog.einstein.ai/improving-graph-networks-with-transformers/
@ArtificialIntelligencedl
https://blog.einstein.ai/improving-graph-networks-with-transformers/
@ArtificialIntelligencedl
Salesforce Research
Improving Graph Convolutional Networks with Lessons from Transformers
Transformer-inspired tips for enhancing the design of neural networks that process graph-structured data