Learning Semantically Enhanced Feature for Fine-Grained Image Classification
Gitgub: https://github.com/cswluo/SEF
Paper: https://arxiv.org/abs/2006.13457v1
Gitgub: https://github.com/cswluo/SEF
Paper: https://arxiv.org/abs/2006.13457v1
Building AI Trading Systems
Lessons learned building a profitable algorithmic trading system using Reinforcement Learning techniques.
https://dennybritz.com/blog/ai-trading/
Lessons learned building a profitable algorithmic trading system using Reinforcement Learning techniques.
https://dennybritz.com/blog/ai-trading/
Dennybritz
Building AI Trading Systems
Lessons learned building a profitable algorithmic trading system using Reinforcement Learning techniques.
Tensor Programs II: Neural Tangent Kernel for Any Architecture
which shows the tangent kernel of any randomly initialized neural network converges in the large width limit.
Github: https://github.com/thegregyang/NTK4A
Paper: https://arxiv.org/abs/2006.14548
which shows the tangent kernel of any randomly initialized neural network converges in the large width limit.
Github: https://github.com/thegregyang/NTK4A
Paper: https://arxiv.org/abs/2006.14548
8 Top Books on Data Cleaning and Feature Engineering
https://machinelearningmastery.com/books-on-data-cleaning-data-preparation-and-feature-engineering/
https://machinelearningmastery.com/books-on-data-cleaning-data-preparation-and-feature-engineering/
SmartReply for YouTube Creators
https://ai.googleblog.com/2020/07/smartreply-for-youtube-creators.html
https://ai.googleblog.com/2020/07/smartreply-for-youtube-creators.html
Googleblog
SmartReply for YouTube Creators
Announcing CUDA on Windows Subsystem for Linux 2
https://developer.nvidia.com/blog/announcing-cuda-on-windows-subsystem-for-linux-2/
https://developer.nvidia.com/blog/announcing-cuda-on-windows-subsystem-for-linux-2/
NVIDIA Technical Blog
Announcing CUDA on Windows Subsystem for Linux 2
In response to popular demand, Microsoft announced a new feature of the Windows Subsystem for Linux 2 (WSL 2)—GPU acceleration—at the Build conference in May 2020. This feature opens the gate for many…
Generating cooking recipes using TensorFlow and LSTM Recurrent Neural Network: A step-by-step guide
https://www.kdnuggets.com/2020/07/generating-cooking-recipes-using-tensorflow.html
https://www.kdnuggets.com/2020/07/generating-cooking-recipes-using-tensorflow.html
KDnuggets
Generating cooking recipes using TensorFlow and LSTM Recurrent Neural Network: A step-by-step guide
A character-level LSTM (Long short-term memory) RNN (Recurrent Neural Network) is trained on ~100k recipes dataset using TensorFlow. The model suggested the recipes "Cream Soda with Onions", "Puff Pastry Strawberry Soup", "Zucchini flavor Tea", and "Salmon…
How to Use Feature Extraction on Tabular Data for Machine Learning - Machine Learning Mastery
https://machinelearningmastery.com/feature-extraction-on-tabular-data/
https://machinelearningmastery.com/feature-extraction-on-tabular-data/
Constructing a 3D Face Mesh from Face Landmarks in Real-Time with TensorFlow.js and Plot.js
https://heartbeat.fritz.ai/constructing-a-3d-face-mesh-from-face-landmarks-in-real-time-with-tensorflow-js-and-plot-js-62b177abcf9f
https://heartbeat.fritz.ai/constructing-a-3d-face-mesh-from-face-landmarks-in-real-time-with-tensorflow-js-and-plot-js-62b177abcf9f
Medium
Constructing a 3D Face Mesh from Face Landmarks in Real-Time with TensorFlow.js and Plot.js
Face landmark recognition and plotting using TensorFlow.js and plotly 3D
Wavelet Networks: Scale Equivariant Learning From Raw Waveforms
Github: https://github.com/dwromero/wavelet_networks
Paper: https://arxiv.org/abs/2006.05259
Github: https://github.com/dwromero/wavelet_networks
Paper: https://arxiv.org/abs/2006.05259
Duality — A New Approach to Reinforcement Learning
https://ai.googleblog.com/2020/07/duality-new-approach-to-reinforcement.html
https://ai.googleblog.com/2020/07/duality-new-approach-to-reinforcement.html
Googleblog
Duality — A New Approach to Reinforcement Learning
One Policy to Control Them All:
Shared Modular Policies for Agent-Agnostic Control
https://wenlong.page/modular-rl/
Shared Modular Policies for Agent-Agnostic Control
https://wenlong.page/modular-rl/
A generative perspective | OATML | Oxford Applied and Theoretical Machine Learning Group
https://oatml.cs.ox.ac.uk/blog/2020/07/10/are-capsules-a-good-idea-a-generative-perspective.html
https://oatml.cs.ox.ac.uk/blog/2020/07/10/are-capsules-a-good-idea-a-generative-perspective.html
oatml.cs.ox.ac.uk
Are capsules a good idea? A generative perspective - OATML
I’ve recently written a paper on a fully probabilistic version of capsule networks. While trying to get this kind of model to work, I found some interesting conceptual issues with the ideas underlying capsule networks. Some of these issues are a bit philosophical…
Fiddler & Captum join hands to enhance Explainable AI offerings
https://medium.com/pytorch/fiddler-captum-join-hands-to-enhance-explainable-ai-offerings-2d92beac2b86
https://medium.com/pytorch/fiddler-captum-join-hands-to-enhance-explainable-ai-offerings-2d92beac2b86
Medium
Fiddler & Captum join hands to enhance Explainable AI offerings
We are excited to announce that Fiddler and Captum are collaborating to push the boundaries of Explainable AI.
⚡️23 июля в 20:00 состоится демо-урок «Логистическая регрессия для классификации данных».
За 1,5 часа вы:
● Обсудите основы регрессионных моделей
● Узнаете, как устроена логистическая регрессия
● Разберёте, какие разделы математики используются для ее построения
● Поймёте, как улучшить этот классификатор.
Занятие является частью курса «Математика для Data Science. Продвинутый уровень». Приходите получить полезные знания, познакомиться с преподавателем и оценить формат обучения.
👉Для регистрации пройдите вступительный тест, который поможет сориентироваться в уровне вашей подготовки: https://otus.pw/f6bb/
За 1,5 часа вы:
● Обсудите основы регрессионных моделей
● Узнаете, как устроена логистическая регрессия
● Разберёте, какие разделы математики используются для ее построения
● Поймёте, как улучшить этот классификатор.
Занятие является частью курса «Математика для Data Science. Продвинутый уровень». Приходите получить полезные знания, познакомиться с преподавателем и оценить формат обучения.
👉Для регистрации пройдите вступительный тест, который поможет сориентироваться в уровне вашей подготовки: https://otus.pw/f6bb/