Artificial Intelligence
16.3K subscribers
1.08K photos
7 videos
1 file
1.95K links
Artificial Intelligence

admin - @haarrp

@itchannels_telegram - 🔥 best it channels

@ai_machinelearning_big_data - Machine learning channel

@pythonl - Our Python channel

@pythonlbooks- python книги📚

@datascienceiot - ml 📚

РКН: clck.ru/3FmwZw
Download Telegram
Forwarded from AI VK Hub
Всем привет! Продолжаем обозревать статьи, представленные на ICML.
Сегодня кратко рассмотрим статью, которая посвящена проблемам оценки качества наборов данных для графового машинного обучения.

В машинном обучении принято сравнивать новые алгоритмы с предыдущими на различных датасетах. Однако в контексте графового машинного обучения возникает вопрос: всегда ли такой подход корректен?

Авторы статьи предлагают набор количественных характеристик, которые помогают оценить, насколько выразительны структура графа и признаки вершин, а также насколько они подходят для решения конкретной задачи — например, классификации вершин.

Такая оценка позволяет исключить как слишком простые графы, на которых любая модель покажет высокий результат, так и слишком сложные, где ни одна модель не сможет выучить закономерности, поскольку таргет не связан с признаками или структурой графа.

Детали

Авторы разработали два алгоритма:

1. Алгоритм возмущений графа, позволяющий оценить, насколько задача действительно зависит от структуры или признаков графа.

2. Метод оценки информативности графа, основанный на анализе того, как при возмущениях меняются важные графовые метрики и расстояния.

Результаты

Методы были применены к нескольким открытым датасетам из биоинформатики и социальных сетей. Были выявлены:

🔸Датасеты с релевантным таргетом.
🔸Датасеты с нерелевантным таргетом.
🔸Графы, которые не подходят для ранжирования алгоритмов машинного обучения.

Предложенный подход помогает оптимизировать тестирование новых алгоритмов машинного обучения. В дальнейшем авторы планируют уточнить разработанный метод, например, для подсчета аналогичных критериев для заданного класса моделей или для заданного класса задач.

Предыдущие обзоры статей с ICML от команды AI VK:
🔸Высокопроизводительные трансформеры на базе MatMuls

#ICML #обзорстатьи
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3🔥2
Forwarded from AI VK Hub
В рекомендациях есть две точки зрения:

1. Бигтех: закинем в нейросеть пару петабайт данных, добавим побольше трансформерных блоков, тысячи видеокарт — и вот вам рексис нового поколения. Но вы не сможете это проверить, потому что только у нас столько данных.
2. Академия: пораскинем мозгами, добавим inductive bias в линейный автоэнкодер и получим соту на всех открытых датасетах. Обучаем на макбуке 19 года.

Мы любим оба подхода, но на ридинг-группе поговорим про второй. Роман Логойда, ML-инженер AI VK, представит статью Why is Normalization Necessary for Linear Recommenders?
🔹Начало встречи 24 июля в 18:00.

Зум: ссылка
ID: 313 292 5940
Код: 473906

Параллельно запустим стрим прямо в канале AI VK Hub.
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥2😁1
InstructFLIP: Exploring Unified Vision-Language Model for Face Anti-spoofing

🖥 Github: https://github.com/kunkunlin1221/InstructFLIP

📕 Paper: https://arxiv.org/pdf/2507.12060v1.pdf

🔗 Dataset: https://paperswithcode.com/dataset/replay-attack

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3🔥1
⚡️ Почему лучшие разработчики всегда на шаг впереди?

Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.

ИИ: t.iss.one/ai_machinelearning_big_data
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Devops: t.iss.one/DevOPSitsec
Базы данных: t.iss.one/sqlhub
Мл собес t.iss.one/machinelearning_interview
C++ t.iss.one/cpluspluc
Docker: t.iss.one/DevopsDocker
Хакинг: t.iss.one/linuxkalii
МЛ: t.iss.one/machinelearning_ru
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/java_library
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Физика: t.iss.one/fizmat
SQL: t.iss.one/databases_tg

Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno

🖥 Chatgpt для кода в тг: @Chatgpturbobot -

📕Ит-книги: https://t.iss.one/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии t.iss.one/addlist/_zyy_jQ_QUsyM2Vi

Подпишись, чтобы всегда знать, куда двигаться дальше!
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2🔥2🥰2
🧠 NVIDIA выпустила обновлённые модели Llama Super v1.5 и *Nemotron Super v1.5* — они помогут делать AI-агентов точнее и эффективнее.

Что нового:
— *Llama Super v1.5* — улучшенная версия модели для диалогов, логических задач и RLHF
— *Nemotron Super v1.5* — набор для обучения, ориентированный на код, инструкции и математику
— Используются методы DPO и rejection sampling для более стабильных и полезных ответов

Обе модели работают с NeMo и оптимизированы под GPU NVIDIA, включая H100.

Если вы строите собственного ИИ-ассистента, пишете агента для задач или просто экспериментируете с LLM — можно попробовать.

🔗Скачать модель: https://huggingface.co/nvidia/Llama-3_3-Nemotron-Super-49B-v1_5
🔗 Блог NVIDIA:
https://developer.nvidia.com/blog/build-more-accurate-and-efficient-ai-agents-with-the-new-nvidia-llama-nemotron-super-v1-5/
4👍2🔥1
Кажется, скоро пройдет что-то про RecSys, ждем подробности!
🔥95🥰2👍1👏1
📈 Взрывной рост OpenAI и Anthropic в 2025

— OpenAI удвоили годовую выручку (ARR) за 6 месяцев: с $6B → $12B
— Anthropic выросли в 5 раз за 7 месяцев: с $1B → $5B

💰 Разделение выручки интересно:
— OpenAI доминирует в подписках от частных и бизнес-пользователей
— Anthropic обогнали в API-доходах: $3.1B против $2.9B
— Но почти весь API-рост Anthropic — это кодинг

🧑‍💻 Cursor и GitHub Copilot дали $1.4B вместе
💡 Code Claude уже приносит $400M ARR — в 2 раза больше, чем месяц назад

⚠️ Но весь этот рост висит на тонком тросе — Claude 4 Sonnet стал стандартом для AI-кодинга. Если GPT-5 перехватит лидерство (и Copilot с Cursor уйдут к OpenAI), рынок может резко поменяться.
4👍4🔥2
🧠 LogicRAG: умный RAG без предсобранных графов

LLM часто ошибаются, когда ответ требует связать много фактов. Классический GraphRAG строит огромный граф по всему корпусу, что дорого и не всегда соответствует логике вопроса.

LogicRAG решает это иначе:

Разбивает запрос на подзадачи и строит небольшой граф зависимостей только для этого вопроса.

Упорядочивает его топологической сортировкой и решает шаг за шагом, подгружая только нужные данные.

Ведёт «скользящую память» — краткое резюме найденных фактов, удаляя лишний контекст.

Объединяет подзадачи одного уровня, чтобы не делать лишние запросы.

Не повторяет почти одинаковые подзапросы.

📊 Результаты:

- 2WikiMQA: +14,7% точности к лучшему базовому методу.
- HotpotQA и MuSiQue: стабильное превосходство.
- Время ответа ~9,8 секунд без затрат на построение графа.

💡 Итог: извлечение данных следует логике вопроса, а не заранее заготовленной карте, что даёт точнее и дешевле ответы.

arxiv.org/abs/2508.06105
👍62🔥1
Forwarded from Machinelearning
📌Как создавали RL-агент AutoGLM-OS, который выбил SOTA на OSWorld, обогнав OpenAI и Anthropic.

Автономные агенты, способные управлять рабочим столом - это Грааль современного HCI. Но их обучение сопряжено с трудностями: GUI созданы для людей, а не для машин, а масштабирование RL упирается в неэффективность и нестабильность сред.

В Z.ai сделали фреймворк COMPUTERRL, который лег в основу агента AutoGLM-OS. Результат - state-of-the-art на бенчмарке OSWorld: 48.1% успешных выполнений и это лучше, чем у OpenAI CUA 03 (42.9%), UI-TARS-1.5 (42.5%) и Claude 4.0 Sonnet (30.7%).

OSWorld — это крупный бенчмарк из 369 заданий для проверки многомодальных ИИ-агентов в реальных условиях. Он работает в Ubuntu, Windows и macOS.

В нем ИИ выполняет открытые задачи: работает с веб- и десктопными приложениями, управляет файлами, запускает процессы. Каждое задание имеет четкие начальные условия и скрипты для оценки, чтобы результаты можно было воспроизвести.


Такие высокие показатели - результат комбинации 3-х инноваций.

🟡Новая парадигма взаимодействия API-GUI.

Фреймворк объединяет GUI-взаимодействия с быстрыми и точными API-вызовами образуя систему, которая через LLM автоматически анализирует примеры задач, генерирует необходимый API-код для стандартных приложений Ubuntu и даже создает для него базовые тесты.
Таким образом, агент использует быстрые API там, где это возможно, и переключается на GUI для общих задач, что повышает и скорость, и надежность. Абляция показала, что переход от GUI-only к API-GUI поднимает средний показатель успеха с 11.2% до 26.2%.

🟡Масштабируемая распределенная RL-инфраструктура.

OSWorld крайне ресурсоемок, и запуск множества его экземпляров на одном узле это тот еще квест. Z.ai полностью переработали эту среду, используя qemu-in-docker для легковесного развертывания VM, gRPC для связи между узлами и полностью асинхронный фреймворк AgentRL. Это позволило создать кластер из тысяч параллельных виртуальных сред, к котором онлайн-обучение RL-агентов стало максимально эффективным.

🟡Стратегия обучения Entropulse.

Entropulse решает проблему коллапса энтропии, чередуя фазы RL с периодическими сессиями SFT. Во время RL-фазы собираются все успешные траектории, и на их основе формируется новый SFT-датасет. Затем модель дообучается на этом датасете, что позволяет восстановить её исследовательскую способность без потери производительности. После этого запускается вторая, более эффективная фаза RL.

Эта стратегия позволила AutoGLM-OS, построенному на базе 9B GLM-4, достичь финального результата в 48.1%, в то время как после первой RL-фазы показатель был 42.0%.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #Agents #AutoGLM #Zai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍3🔥2🤔1
Страх утечки убивает доверие к ИИ.

Мы понимаем, что технологии могут облегчить жизнь: обработать таблицы, структурировать тексты, автоматизировать задачи. Но каждый раз, когда речь заходит о конфиденциальных данных, возникает барьер. Ведь стоит им оказаться в чужой системе — и назад их уже не вернуть.

25 августа в 19:00 (МСК) karpovꓸcourses проведут вебинар «Как обрабатывать конфиденциальные данные с помощью ИИ». Вы увидите, как запускать локальные модели и подключать к ним собственные данные. Все работает прямо на вашем компьютере, и только вы решаете, кто получит доступ к информации.

Спикер — Павел Зуриев, руководитель ИТ-проектов по внедрению ИИ в бизнес-процессы.

Сделайте шаг к безопасной работе с ИИ: https://clc.to/erid_2W5zFG4jAxg

Реклама. ООО "КАРПОВ КУРСЫ". ИНН 7811764627. erid: 2W5zFG4jAxg
👍3