Artificial Intelligence
16.3K subscribers
1.09K photos
7 videos
1 file
1.95K links
Artificial Intelligence

admin - @haarrp

@itchannels_telegram - 🔥 best it channels

@ai_machinelearning_big_data - Machine learning channel

@pythonl - Our Python channel

@pythonlbooks- python книги📚

@datascienceiot - ml 📚

РКН: clck.ru/3FmwZw
Download Telegram
Are They the Same? Exploring Visual Correspondence Shortcomings of Multimodal LLMs

🖥 Github: https://github.com/zhouyiks/CoLVA/tree/main

📕 Paper: https://arxiv.org/pdf/2501.04670v1.pdf

🌟 Dataset: https://paperswithcode.com/dataset/bdd100k

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72🔥2
Parameter-Inverted Image Pyramid Networks for Visual Perception and Multimodal Understanding

🖥 Github: https://github.com/opengvlab/piip

📕 Paper: https://arxiv.org/abs/2501.07783v1

🌟 Dataset: https://paperswithcode.com/dataset/gqa

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍4🔥3
Continual Forgetting for Pre-trained Vision Models (CVPR2024)

🖥 Github: https://github.com/bjzhb666/GS-LoRA

📕 Paper: https://arxiv.org/abs/2501.09705v1

🧠 Dataset: https://paperswithcode.com/dataset/coco

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9🔥32
⭐️ Fast Think-on-Graph: Wider, Deeper and Faster Reasoning of Large Language Model on Knowledge Graph

🖥 Github: https://github.com/dosonleung/fasttog

📕 Paper: https://arxiv.org/abs/2501.14300v1

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍82🥰2
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.iss.one/ai_machinelearning_big_data
C++ t.iss.one/cpluspluc
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Хакинг: https://t.iss.one/+i__6ED-eRfkwOTYy
Devops: t.iss.one/DevOPSitsec
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/javatg
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Docker: t.iss.one/DevopsDocker
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
Собеседования МЛ: t.iss.one/machinelearning_interview
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Haskell: t.iss.one/haskell_tg
Физика: t.iss.one/fizmat

💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51🥰1
Demystifying Long Chain-of-Thought Reasoning in LLMs

🖥 paper
🧠 code

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41
CycleGuardian: A Framework for Automatic RespiratorySound classification Based on Improved Deep clustering and Contrastive Learning

🖥 Github: https://github.com/chumingqian/CycleGuardian

📕 Paper: https://arxiv.org/abs/2502.00734v1

🌟 Dataset: https://paperswithcode.com/dataset/icbhi-respiratory-sound-database

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2🔥1
⭐️ Light-A-Video: Training-free Video Relighting via Progressive Light Fusion

🖥 Github: https://github.com/bcmi/Light-A-Video

📕 Paper: https://arxiv.org/abs/2502.08590v1

🌟 Dataset: https://paperswithcode.com/task/image-relighting

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32🔥1😁1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31
✔️ Awesome AI/ML Resources: Learn AI/ML for beginners with a roadmap and free resources.

🖥 Github

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍4🔥1
Forwarded from Machinelearning
✔️ GitHub Copilot для Xcode запущен для публичного тестирования.

GitHub Copilot для Xcode Chat стал доступен для публичного превью. Для начала работы достаточно учетной записи GitHub.

GitHub Copilot – это ИИ-ассистент, который помогает разработчикам писать код быстрее и точнее. Теперь, помимо дописывания кода, GitHub Copilot для Xcode предлагает интеллектуальные предложения для конкретных задач через интерактивный чат.

Для доступа к GitHub Copilot для Xcode потребуется лицензия Copilot. Есть бесплатный доступ, включающий 2000 итераций автозавершения кода и 50 чат-запросов в месяц.
devblogs.microsoft.com

✔️ OpenAI опубликовала SWE-Lancer: бенчмарк для LLM в кодинге.

SWE-Lancer позиционируется как инструмент оценки производительности языковых моделей в задачах программирования для фрилансеров. Он основан на 1400 фриланс-задачах, собранных из Upwork и репозитория Expensify. Задания варьируются от исправления незначительных ошибок до внедрения крупных функций.

SWE-Lancer предназначен для оценки как отдельных исправлений кода, так и управленческих решений, где модели должны выбирать лучшее предложение из нескольких вариантов. Одной из сильных сторон SWE-Lancer является использование сквозных тестов вместо изолированных модульных операций. Репозиторий бенчмарка ожидается в ближайшее время.
arxiv.org

✔️ X повышает цены на Premium+ после выпуска Grok 3.

X (ех-Twitter) значительно повысила цену на план подписки Premium+, дающий доступ к Grok 3 от xAI. Она подорожала почти до 50 долларов в месяц.

Теперь, чтобы пользоваться "deep search" и "reasoning", надо оформить отдельный план SuperGrok через приложение Grok.

Согласно сайту поддержки X, месячная подписка на Premium+ в США теперь стоит 50 долларов, а годовая – 350 долларов. Это уже второе повышение цен на план Premium+ за последние пару месяцев. В декабре компания подняла цену с 16 до 22 долларов в месяц. Таким образом, новая цена более чем вдвое превышает текущую стоимость подписки.
techcrunch.com

✔️ Native Sparse Attention - революция в механизмах внимания от Deepseek.

NSA (Natively Sparse Attention) — новый механизм внимания, предложенный на заменуFull Attention, который значительно ускоряет обработку длинных последовательностей текста без потери качества модели.
NSA использует динамическую иерархическую стратегию, которая сочетает сжатие токенов на грубом уровне с точным отбором ключевых токенов. Это позволяет сохранить глобальное понимание контекста и локальную точность. NSA поддерживает сквозное обучение, совместим с GQA и MQA, что делает его пригодным не только для инференса, но и для обучения.
Модели, обученные с использованием NSA показали 9х ускорение при прямом распространении и 6х при обратном для последовательностей длиной 64к токенов относительно Full Attention. В декодировании - 11х.
arxiv.org

✔️ Мира Мурати готова рассказать миру, над чем она работает.

Мира Мурати, ex-CTO OpenAI, покинула свой пост в сентябре 2024, заявив о желании "создать время и пространство для собственных исследований". И вот стало известно, что она – CEO компании Thinking Machines Lab. Ее миссия – разработка первоклассного AI, полезного и доступного для всех.

В команду Thinking Machines Lab вошли известные исследователи и ученые, в основном из OpenAI. Среди них – экс-вице-президент по исследованиям Баррет Зоф, руководитель по мультимодальным исследованиям Александр Кириллов, руководитель специальных проектов Джон Лакман и ведущий исследователь Люк Мец. Главным научным сотрудником станет Джон Шульман, один из ключевых создателей ChatGPT, ранее работавший в OpenAI и Anthropic. Есть специалисты из Google и Mistral AI.

Команда уже работает над рядом проектов в офисе в Сан-Франциско. Хотя конкретные продукты пока неясны, Thinking Machines Lab не планирует создавать копии ChatGPT или Claude. Цель – AI-модели, оптимизирующие сотрудничество между человеком и AI, что Мурати считает главным препятствием в развитии отрасли.
wired.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42
Bridging Text and Vision: A Multi-View Text-Vision Registration Approach for Cross-Modal Place Recognition

🖥 Github: https://github.com/nuozimiaowu/Text4VPR

📕 Paper: https://arxiv.org/abs/2502.14195v1

🌟 Dataset: https://paperswithcode.com/task/cross-modal-place-recognition

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2🔥1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Модель Wan2.1-T2V-14B от команды Wan-AI – новый топовый опенсорс инструмент генерации видео, который объединяет в себе несколько интересных особенностей.

⚡️ Мощная архитектура yf 14 млрд параметров

Модель способна детально прорабатывать сцены и динамику, генерируя высококачественные видео, где каждая деталь выглядит реалистично.

Модель поддерживает:

- Text-to-Video: генерация видео по текстовым запросам.
Image-to-Video: преобразование статических изображений в анимированные видеоролики.
- Видео-редактирование: внесение изменений в уже существующие видео.
- Text-to-Image: создание изображений на основе текста.
- Video-to-Audio: синтез аудио, соответствующих содержанию видео.
Такая универсальность делает модель полезной для широкого спектра приложений.

Использование видео VAE (вариационного автоэнкодера)
В основе модели лежит мощный видео VAE, который эффективно кодирует и декодирует видеоконтент. Это позволяет:

- Обрабатывать видео высокого разрешения (до 1080p).
- Сохранять временную динамику и последовательность кадров.
- Обеспечивать плавное и согласованное воспроизведение движения.
- Оптимизация для потребительских видеокарт

Несмотря на свои масштабы, модель оптимизирована для работы на современных GPU.

Например, версия T2V-1.3B требует всего 8,19 ГБпамяти и способна генерировать 5-секундное видео с разрешением 480p примерно за 4 минуты на RTX 4090 без применения дополнительных оптимизаций.

Как работает:

Ввод данных: Пользователь может задать текстовое описание, предоставить изображение или даже видео, в зависимости от задачи.
Кодирование: Виде VAE преобразует входные данные в компактное представление, сохраняя при этом критически важную информацию о сцене и динамике.
Генерация: На основе этого представления и с использованием огромного количества параметров модель генерирует новый видеоряд, который соответствует заданному описанию или образцу.
Декодирование: Затем VAE декодирует это представление обратно в полноценное видео, где соблюдаются все временные и визуальные детали.

Таким образом, Wan2.1-T2V-14B выделяется своей способностью не только создавать качественные видео по текстовому описанию, но и решать множество сопутствующих задач (от редактирования до генерации аудио), оставаясь при этом оптимизированной для работы на доступном оборудовании.

Это делает её одной из самых перспективных разработок в области генеративного видео на сегодняшний день.

🟡 Github: https://github.com/Wan-Video/Wan2.1/
🟡HF: https://huggingface.co/Wan-AI/Wan2.1-T2V-14B
🟡Model Scope: https://modelscope.cn/organization/Wan-AI

@ai_machinelearning_big_data

#TexttoVideo #ai #ml #video #wanai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31👎1