Сбер решил сделать подарок всем любителям научного знания и запустил сайт ко Дню российской науки. На сайте можно найти информацию об исследованиях и разработках (R&D) Сбербанка за последние годы.
Также там можно почитать об открытиях и проектах 10 лабораторий Сбера по топовым направлениям науки, в частности:
➡️блокчейн
➡️нейронауки
➡️AR/VR
➡️геймификация
➡️интернет вещей
➡️кибербезопасность
➡️искусственный интеллект
Кроме того можно узнать о партнёрских проектах лабораторий Сбера с ведущими вузами страны и центрами искусственного интеллекта на базе ВШЭ, Сколтеха и МФТИ, присоединиться к мероприятиям, которые проводят исследователи Сбера.
Кому мало, могут посетить специальный проект для всех, кто интересуется наукой.
ArtificialIntelligencedl
Также там можно почитать об открытиях и проектах 10 лабораторий Сбера по топовым направлениям науки, в частности:
➡️блокчейн
➡️нейронауки
➡️AR/VR
➡️геймификация
➡️интернет вещей
➡️кибербезопасность
➡️искусственный интеллект
Кроме того можно узнать о партнёрских проектах лабораторий Сбера с ведущими вузами страны и центрами искусственного интеллекта на базе ВШЭ, Сколтеха и МФТИ, присоединиться к мероприятиям, которые проводят исследователи Сбера.
Кому мало, могут посетить специальный проект для всех, кто интересуется наукой.
ArtificialIntelligencedl
👍7👎1🔥1👏1😁1
NASiam: Efficient Representation Learning using Neural Architecture Search for Siamese Networks
🖥 Github:https://github.com/aheuillet/nasiam
⏩ Paper: https://arxiv.org/pdf/2302.00059v1.pdf
➡️ Dataset:https://paperswithcode.com/dataset/cifar-100
ArtificialIntelligenceу
🖥 Github:https://github.com/aheuillet/nasiam
⏩ Paper: https://arxiv.org/pdf/2302.00059v1.pdf
➡️ Dataset:https://paperswithcode.com/dataset/cifar-100
ArtificialIntelligenceу
👍3❤2🔥1
FakeSV: A Multimodal Benchmark with Rich Social Context for Fake News Detection on Short Video Platforms
🖥 Github: https://github.com/ictmcg/fakesv
⏩ Paper: https://arxiv.org/abs/2302.03242v1
➡️ Data Processing: https://github.com/YaoFANGUK/video-subtitle-extractor
ArtificialIntelligenceу
ArtificialIntelligenceу
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
PySlowFast
🖥 Github: https://github.com/facebookresearch/SlowFast
⏩ Paper: https://arxiv.org/abs/2302.04869v1
➡️ Dataset: https://paperswithcode.com/dataset/kinetics-400-1
ArtificialIntelligenceу
ArtificialIntelligenceу
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5👍2❤1
ManiSkill2: A Unified Benchmark for Generalizable Manipulation Skills
🖥 Github: https://github.com/haosulab/maniskill2
🖥 Colab: https://colab.research.google.com/github/haosulab/ManiSkill2/blob/main/examples/tutorials/1_quickstart.ipynb
📎 Docs: https://haosulab.github.io/ManiSkill2
⏩ Paper: https://arxiv.org/abs/2302.04659v1
➡️ Dataset: https://paperswithcode.com/dataset/plasticinelab
ArtificialIntelligenceу
📎 Docs: https://haosulab.github.io/ManiSkill2
ArtificialIntelligenceу
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1🔥1
Polynomial Neural Fields for Subband Decomposition and Manipulation
🖥 Github: https://github.com/stevenygd/pnf
⏩ Paper: https://arxiv.org/abs/2302.04862v1
➡️ Dataset: https://paperswithcode.com/dataset/div2k
ArtificialIntelligenceу
ArtificialIntelligenceу
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥1
Better Diffusion Models Further Improve Adversarial Training
🖥 Github: https://github.com/wzekai99/dm-improves-at
⏩ Paper: https://arxiv.org/abs/2302.04638v1
➡️ Dataset: https://paperswithcode.com/dataset/robustbench
ArtificialIntelligenceу
ArtificialIntelligenceу
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤1👏1
Raising the Cost of AI-Powered Image Editing via Adversarial Perturbations
🖥 Github: https://github.com/madrylab/photoguard
🖥 Colab: https://colab.research.google.com/drive/1pwfeSe6MUjD7UfqdWxurMSWWZhic9TPl?usp=sharing
⏩ Paper: https://arxiv.org/abs/2302.06588v1
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥6❤1👍1
Espaloma Charge
🖥 Github: https://github.com/choderalab/espaloma_charge
🖥 Colab: https://colab.research.google.com/drive/1e14EkNyidPI0wXBGcewh9m9LC1imSRWZ?usp=sharing
⏩ Paper: https://arxiv.org/abs/2302.06758v1
➡️ Dataset: https://paperswithcode.com/dataset/spice
@ArtificialIntelligencedl
$ pip install espaloma_charge
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
🥰4👍2❤1
This media is not supported in your browser
VIEW IN TELEGRAM
YOWOv2: A Stronger yet Efficient Multi-level Detection Framework for Real-time Spatio-temporal Action Detection
🖥 Github: https://github.com/yjh0410/YOWOv2
⏩ Paper: https://arxiv.org/abs/2302.06848v1
➡️ Dataset: https://paperswithcode.com/dataset/ava
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍3🔥2
Complex-Valued Neural Networks in Keras with Tensorflow
🖥 Github: https://github.com/JesperDramsch/keras-complex
⏩ Paper: https://arxiv.org/abs/2302.08286v1
➡️ Docs: https://keras-complex.readthedocs.io/math.html
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥2❤1🤔1
A Bayesian optimization toolbox built on TensorFlow. Trieste supports onwards and uses semantic versioning.
$ pip install trieste
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥2❤1
CluCDD:Contrastive Dialogue Disentanglement via Clustering
🖥 Github: https://github.com/gaojingsheng/clucdd
⏩ Paper: https://arxiv.org/abs/2302.08146v1
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥2🥰2🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
Swapped goal-conditioned offline reinforcement learning
🖥 Github: https://github.com/jasonma2016/gofar
⏩ Paper: https://arxiv.org/abs/2302.08865v1
➡️ Project: https://jasonma2016.github.io/GoFAR/
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤1🥰1😢1
A Survey on Semi-Supervised Semantic Segmentation
🖥 Github: https://github.com/charlesCXK/TorchSemiSeg
⏩ Paper: https://arxiv.org/abs/2302.09899v1
➡️ Dataset: https://paperswithcode.com/dataset/sbd
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥1
EC-SfM: Efficient Covisibility-based Structure-from-Motion for Both Sequential and Unordered Images
🖥 Github: https://github.com/openxrlab/xrsfm
⏩ Paper: https://arxiv.org/abs/2302.10544v1
➡️ Dataset: https://openxrlab-share.oss-cn-hongkong.aliyuncs.com/xrsfm/test_data.zip?versionId=CAEQQBiBgMCi_6mllxgiIGI2ZjM1YjE1NjBmNTRmYjc5NzZlMzZkNWY1ZTk1YWFj
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
Global Filter Networks for Image Classification
🖥 Github: https://github.com/raoyongming/GFNet
⏩ Paper: https://arxiv.org/abs/2302.10859v1
➡️ Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4❤1👍1
RDM: Region-Aware Diffusion for Zero-shot Text-driven Image Editing
🖥 Github: https://github.com/haha-lisa/RDM-Region-Aware-Diffusion-Model
⏩ Paper: https://arxiv.org/abs/2302.11797v1
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2🔥2
On the Robustness of ChatGPT: An Adversarial and Out-of-distribution Perspective
🖥 Github: https://github.com/microsoft/robustlearn
⏩ Paper: https://arxiv.org/abs/2302.12095v1
➡️ Dataset: https://paperswithcode.com/dataset/advglue
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤1🔥1
Getting more than what you've asked for: The Next Stage of Prompt Hacking
🖥 Github: https://github.com/greshake/lm-safety
⏩ Paper: https://arxiv.org/abs/2302.12173v1
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥1
SurvivalGAN: Generating Time-to-Event Data for Survival Analysis
🖥 Github: https://github.com/vanderschaarlab/survivalgan
⏩ Paper: https://arxiv.org/abs/2302.12749v1
➡️ Tutorials: https://github.com/vanderschaarlab/synthcity#-tutorials
@ArtificialIntelligencedl
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2🔥1