Artificial Intelligence
16.3K subscribers
1.09K photos
7 videos
1 file
1.95K links
Artificial Intelligence

admin - @haarrp

@itchannels_telegram - πŸ”₯ best it channels

@ai_machinelearning_big_data - Machine learning channel

@pythonl - Our Python channel

@pythonlbooks- python ΠΊΠ½ΠΈΠ³ΠΈπŸ“š

@datascienceiot - ml πŸ“š

РКН: clck.ru/3FmwZw
Download Telegram
πŸ“° A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection

a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection based on such raw reports, alleviating the dependency on fact-checked ones.

βš™οΈGithub: https://github.com/nicozwy/cofced

πŸ“„Paper: https://arxiv.org/abs/2209.14642v1

πŸ—’Dataset: https://paperswithcode.com/dataset/fever

@ArtificialIntelligencedl
πŸ‘8❀1πŸ”₯1
πŸ“Œ Denoising MCMC for Accelerating Diffusion-Based Generative Models

a general sampling framework, Denoising MCMC (DMCMC), that combines Markov chain Monte Carlo (MCMC) with reverse-SDE/ODE integrators / diffusion models to accelerate score-based sampling.

βš™οΈGithub: https://github.com/1202kbs/dmcmc

πŸ“„Paper: https://arxiv.org/abs/2209.14593v1

πŸ—’Dataset: https://paperswithcode.com/dataset/celeba-hq

@ArtificialIntelligencedl
πŸ‘8❀2πŸ₯°1
βœ”οΈ 4D-StOP: Panoptic Segmentation of 4D LiDAR using Spatio-temporal Object Proposal Generation and Aggregation

conda create --name <env> --file requirements.txt

cd cpp_wrappers
sh compile_wrappers.sh

cd pointnet2
python setup.py install

βš™οΈGithub: https://github.com/larskreuzberg/4d-stop

πŸ“„Paper: https://arxiv.org/abs/2209.14858v1

πŸ—’Dataset: https://paperswithcode.com/dataset/semantickitti

@ArtificialIntelligencedl
πŸ‘6πŸ€”2❀1πŸ”₯1
πŸ“Œ ExtrudeNet: Unsupervised Inverse Sketch-and-Extrude for Shape Parsing

An unsupervised end-to-end network for discovering sketch and extrude from point clouds.

conda create --name ExtrudeNet python=3.7
conda activate ExtrudeNet
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
conda install -c open3d-admin open3d
conda install numpy
conda install pymcubes
conda install tensorboard
conda install scipy
pip install tqdm

βš™οΈGithub: https://github.com/kimren227/extrudenet

πŸ“„Paper: https://arxiv.org/abs/2209.15632v1

@ArtificialIntelligencedl
πŸ‘5❀1
βœ”οΈ From Face to Natural Image: Learning Real Degradation for Blind Image Super-Resolution

git clone https://github.com/csxmli2016/ReDegNet
cd ReDegNet
conda create -n redeg python=3.8 -y
conda activate redeg
python setup.py develop


βš™οΈGithub: https://github.com/csxmli2016/redegnet

πŸ“„Paper: https://arxiv.org/abs/2210.00752v1

πŸ—’Dataset: https://paperswithcode.com/dataset/realsrset

@ArtificialIntelligencedl
πŸ‘4❀1πŸ”₯1
πŸ–₯ The Vendi Score: A Diversity Evaluation Metric for Machine Learning

pip install vendi_score

βš™οΈGithub: https://github.com/vertaix/vendi-score

πŸ“„Paper: https://arxiv.org/abs/2210.02410v1

πŸ—’Dataset: https://paperswithcode.com/dataset/multinli

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘6❀1πŸ”₯1
🎞 Inverting a Rolling Shutter Camera: Bring Rolling Shutter Images to High Framerate Global Shutter Video

βš™οΈGithub: https://github.com/gitcvfb/rssr

πŸ“„Paper: https://arxiv.org/abs/2210.03040v1

πŸ—’Dataset: https://paperswithcode.com/dataset/carla

@ArtificialIntelligencedl
πŸ‘4πŸ”₯1πŸ₯°1
πŸ”₯ ПолСзнСйшая ΠŸΠΎΠ΄Π±ΠΎΡ€ΠΊΠ° ΠΊΠ°Π½Π°Π»ΠΎΠ²

πŸ–₯ Machine learning
@ai_machinelearning_big_data – всС ΠΎ машинном ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠΈ
@data_analysis_ml – всС ΠΎ Π°Π½Π°Π»ΠΈΠ·Π΅ Π΄Π°Π½Π½Ρ‹Ρ….
@machinelearning_ru – машинноС ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠΈ Π½Π° русском ΠΎΡ‚ Π½ΠΎΠ²ΠΈΡ‡ΠΊΠ° Π΄ΠΎ профСссионала.
@machinelearning_interview – ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° ΠΊ собСсСдования Data Science
@datascienceiot – бСсплатныС ΠΊΠ½ΠΈΠ³ΠΈ Machine learning
@ArtificialIntelligencedl – ΠΊΠ°Π½Π°Π» ΠΎ искусствСнном ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π΅
@neural – всС ΠΎ Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтях
@machinee_learning – Ρ‡Π°Ρ‚ ΠΎ машинном ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠΈ
@datascienceml_jobs - Ρ€Π°Π±ΠΎΡ‚Π° ds, ml

πŸ–₯ Python

@pro_python_code – ΠΏΠΎΠ³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π² python
@python_job_interview – ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° ΠΊ Python собСсСдованию
@python_testit тСсты Π½Π° python
@pythonlbooks - ΠΊΠ½ΠΈΠ³ΠΈ Python
@Django_pythonl django
@python_djangojobs - Ρ€Π°Π±ΠΎΡ‚Π° Python

πŸ–₯ Java
@javatg - Java для програмистов
@javachats Java Ρ‡Π°Ρ‚
@java_library - ΠΊΠ½ΠΈΠ³ΠΈ Java
@android_its Android Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°
@java_quizes - тСсты Java
@Java_workit - Ρ€Π°Π±ΠΎΡ‚Π° Java
@progersit - ΡˆΠΏΠ°Ρ€Π³Π°Π»ΠΊΠΈ ΠΈΡ‚

πŸ–₯ Javascript / front
@javascriptv - javascript ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅
@about_javascript - javascript ΠΏΡ€ΠΎΠ΄Π²ΠΈΠ½ΡƒΡ‚Ρ‹ΠΉ
@JavaScript_testit -тСсты JS
@htmlcssjavas - web
@hashdev - web Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°

πŸ‘£ Golang
@golang_interview - вопросы ΠΈ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ с собСсСдований ΠΏΠΎ Go. Для всСх ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊΠΎΠ².
@Golang_google - go для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊΠΎΠ²
@golangtests - тСсты ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ GO
@golangl - Ρ‡Π°Ρ‚ Golang
@GolangJobsit - вакансии ΠΈ Ρ€Π°Π±ΠΎΡ‚Π° GO
@golang_jobsgo - Ρ‡Π°Ρ‚ вакансий
@golang_books - ΠΊΠ½ΠΈΠ³ΠΈ Golang
@golang_speak - обсуТдСниС Π·Π°Π΄Π°Ρ‡ Go

πŸ–₯ Linux
@linux_kal - Ρ‡Π°Ρ‚ kali linux
@linuxkalii - linux kali
@linux_read - ΠΊΠ½ΠΈΠ³ΠΈ linux

πŸ‘·β€β™‚οΈ IT Ρ€Π°Π±ΠΎΡ‚Π°

@hr_itwork - ΠΈΡ‚-ваканнсии

πŸ–₯ SQL
@sqlhub - Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ…
@chat_sql - Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… Ρ‡Π°Ρ‚

🀑It memes
@memes_prog - ΠΈΡ‚-ΠΌΠ΅ΠΌΡ‹

βš™οΈ Rust
@rust_code - язык программирования rust
@rust_chats - Ρ‡Π°Ρ‚ rust

#️⃣ c# c++
@csharp_ci - c# c++ΠΊΠΎΠ΄ΠΈΠ½Π³
@csharp_cplus Ρ‡Π°Ρ‚

πŸ““ Книги

@programming_books_it
@datascienceiot
@pythonlbooks
@golang_books
@frontendbooksit
@progersit
@linux_read
@java_library
@frontendbooksit

πŸ“’ English for coders

@english_forprogrammers - Английский для программистов

πŸ–₯ Github
@github_code
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘6πŸ‘Ž2❀1πŸ”₯1
πŸ“ Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence

git clone https://github.com/SunghwanHong/CATs
cd CATs

conda create -n CATs python=3.6
conda activate CATs

pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install -U scikit-image
pip install git+https://github.com/albumentations-team/albumentations
pip install tensorboardX termcolor timm tqdm requests pandas


βš™οΈGithub: https://github.com/SunghwanHong/Cost-Aggregation-transformers

πŸ“„Paper: https://arxiv.org/abs/2210.02689v1

πŸ—’Dataset: https://paperswithcode.com/dataset/nerf

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘5❀2πŸ”₯2
πŸ–₯ CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning

A novel method, CANIFE, that uses canaries - carefully crafted samples by a strong adversary to evaluate the empirical privacy of a training round.

conda create -n "canife" python=3.9
conda activate canife
pip install -r ./requirements.txt


βš™οΈGithub: https://github.com/facebookresearch/canife

πŸ“„Paper: https://arxiv.org/abs/2210.02912v1

πŸ—’Dataset: https://paperswithcode.com/dataset/cifar-10

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘6❀1πŸ”₯1
πŸ’» A Closer Look at Hardware-Friendly Weight Quantization

βš™οΈGithub: https://github.com/google/qkeras

πŸ“„Paper: https://arxiv.org/abs/2210.03671v1

πŸ—’Training: https://github.com/BertMoons/QuantizedNeuralNetworks-Keras-Tensorflow

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘5❀1πŸ”₯1
πŸ‘£ OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point Clouds

βš™οΈGithub: https://github.com/vlar-group/ogc

πŸ“„Paper: https://arxiv.org/abs/2210.04458v1

β†ͺ️ Demo: https://www.youtube.com/watch?v=dZBjvKWJ4K0

πŸ—’Dataset: https://paperswithcode.com/dataset/kitti

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘3❀1πŸ”₯1
πŸ›  Understanding Embodied Reference with Touch-Line Transformer

conda create --name nvvc python=3.8
conda activate nvvc
pip install -r requirements.txt
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch


βš™οΈGithub: https://github.com/yang-li-2000/understanding-embodied-reference-with-touch-line-transformer

πŸ“„Paper: https://arxiv.org/abs/2210.05668v2

πŸ—’Dataset: https://paperswithcode.com/dataset/refcoco

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘4❀1πŸ”₯1
πŸ–₯ Exploring Long-Sequence Masked Autoencoders

βš™οΈGithub: https://github.com/facebookresearch/long_seq_mae

πŸ“„Paper: https://arxiv.org/abs/2210.07224v1

πŸ—’Dataset: https://paperswithcode.com/dataset/places

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘4❀1πŸ”₯1
πŸ—„ SUPERB-prosody: On The Utility of Self-supervised Models for Prosody-related Tasks

βš™οΈGithub: https://github.com/jsalt-2022-ssl/superb-prosody

πŸ“„Paper: https://arxiv.org/abs/2210.07185v1

πŸ—’Tasks: https://paperswithcode.com/task/prosody-prediction

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘6❀1πŸ”₯1
πŸ”© SubeventWriter: Iterative Sub-event Sequence Generation with Coherence Controller

βš™οΈGithub: https://github.com/hkust-knowcomp/subeventwriter

πŸ“„Paper: https://arxiv.org/abs/2210.06694v1

πŸ—’Dataset: https://paperswithcode.com/dataset/wikihow

@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘4❀1πŸ”₯1
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘8❀1πŸ₯°1