🔸 Poisson Flow Generative Models
A new Poisson flow generative model (PFGM) that maps a uniform distribution on a high-dimensional hemisphere into any data distribution.
⚙️Github: https://github.com/newbeeer/poisson_flow
📄Paper: https://arxiv.org/abs/2209.11178v1
🗒Dataset: https://paperswithcode.com/dataset/lsun
@ArtificialIntelligencedl
A new Poisson flow generative model (PFGM) that maps a uniform distribution on a high-dimensional hemisphere into any data distribution.
⚙️Github: https://github.com/newbeeer/poisson_flow
📄Paper: https://arxiv.org/abs/2209.11178v1
🗒Dataset: https://paperswithcode.com/dataset/lsun
@ArtificialIntelligencedl
👍7❤1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 On Efficient Reinforcement Learning for Full-length Game of StarCraft II
In this work, we investigate a set of RL techniques for the full-length game of StarCraft II
⚙️Github: https://github.com/liuruoze/mini-AlphaStar
📄Paper: https://arxiv.org/abs/2209.11553v1
🗒HierNet-SC2: https://github.com/liuruoze/hiernet-sc2
@ArtificialIntelligencedl
In this work, we investigate a set of RL techniques for the full-length game of StarCraft II
⚙️Github: https://github.com/liuruoze/mini-AlphaStar
📄Paper: https://arxiv.org/abs/2209.11553v1
🗒HierNet-SC2: https://github.com/liuruoze/hiernet-sc2
@ArtificialIntelligencedl
👍7❤1🔥1
🦾 EasyRec: An easy-to-use, extendable and efficient framework for building industrial recommendation systems
EasyRec implements state of the art deep learning models used in common recommendation tasks: candidate generation(matching), scoring(ranking), and multi-task learning.
⚙️Github: https://github.com/alibaba/easyrec
📄Paper: https://arxiv.org/abs/2209.12766v1
🗒Dataset: https://paperswithcode.com/dataset/criteo
@ArtificialIntelligencedl
EasyRec implements state of the art deep learning models used in common recommendation tasks: candidate generation(matching), scoring(ranking), and multi-task learning.
⚙️Github: https://github.com/alibaba/easyrec
📄Paper: https://arxiv.org/abs/2209.12766v1
🗒Dataset: https://paperswithcode.com/dataset/criteo
@ArtificialIntelligencedl
👍6❤1🔥1😁1
News Summarization and Evaluation in the Era of GPT-3
Corpus of 10K generated summaries from fine-tuned and zero-shot models across 4 standard summarization benchmarks.
⚙️Github: https://github.com/tagoyal/factuality-datasets
📄Paper: https://arxiv.org/abs/2209.12356v1
🗒Dataset: https://paperswithcode.com/dataset/cnn-daily-mail-1
@ArtificialIntelligencedl
Corpus of 10K generated summaries from fine-tuned and zero-shot models across 4 standard summarization benchmarks.
⚙️Github: https://github.com/tagoyal/factuality-datasets
📄Paper: https://arxiv.org/abs/2209.12356v1
🗒Dataset: https://paperswithcode.com/dataset/cnn-daily-mail-1
@ArtificialIntelligencedl
👍3❤1🔥1
🦾 Obj2Seq: Formatting Objects as Sequences with Class Prompt for Visual Tasks
An object-centric vision framework, Obj2Seq. Obj2Seq takes objects as basic units, and regards most object-level visual tasks as sequence generation problems of objects.
⚙️Github: https://github.com/casia-iva-lab/obj2seq
📄Paper: https://arxiv.org/abs/2209.13948
🗒Dataset: https://paperswithcode.com/dataset/coco
@ArtificialIntelligencedl
An object-centric vision framework, Obj2Seq. Obj2Seq takes objects as basic units, and regards most object-level visual tasks as sequence generation problems of objects.
⚙️Github: https://github.com/casia-iva-lab/obj2seq
📄Paper: https://arxiv.org/abs/2209.13948
🗒Dataset: https://paperswithcode.com/dataset/coco
@ArtificialIntelligencedl
👍4❤1🔥1
📰 A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection
a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection based on such raw reports, alleviating the dependency on fact-checked ones.
⚙️Github: https://github.com/nicozwy/cofced
📄Paper: https://arxiv.org/abs/2209.14642v1
🗒Dataset: https://paperswithcode.com/dataset/fever
@ArtificialIntelligencedl
a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection based on such raw reports, alleviating the dependency on fact-checked ones.
⚙️Github: https://github.com/nicozwy/cofced
📄Paper: https://arxiv.org/abs/2209.14642v1
🗒Dataset: https://paperswithcode.com/dataset/fever
@ArtificialIntelligencedl
👍8❤1🔥1
📌 Denoising MCMC for Accelerating Diffusion-Based Generative Models
a general sampling framework, Denoising MCMC (DMCMC), that combines Markov chain Monte Carlo (MCMC) with reverse-SDE/ODE integrators / diffusion models to accelerate score-based sampling.
⚙️Github: https://github.com/1202kbs/dmcmc
📄Paper: https://arxiv.org/abs/2209.14593v1
🗒Dataset: https://paperswithcode.com/dataset/celeba-hq
@ArtificialIntelligencedl
a general sampling framework, Denoising MCMC (DMCMC), that combines Markov chain Monte Carlo (MCMC) with reverse-SDE/ODE integrators / diffusion models to accelerate score-based sampling.
⚙️Github: https://github.com/1202kbs/dmcmc
📄Paper: https://arxiv.org/abs/2209.14593v1
🗒Dataset: https://paperswithcode.com/dataset/celeba-hq
@ArtificialIntelligencedl
👍8❤2🥰1
✔️ 4D-StOP: Panoptic Segmentation of 4D LiDAR using Spatio-temporal Object Proposal Generation and Aggregation
⚙️Github: https://github.com/larskreuzberg/4d-stop
📄Paper: https://arxiv.org/abs/2209.14858v1
🗒Dataset: https://paperswithcode.com/dataset/semantickitti
@ArtificialIntelligencedl
conda create --name <env> --file requirements.txt
cd cpp_wrappers
sh compile_wrappers.sh
cd pointnet2
python setup.py install
⚙️Github: https://github.com/larskreuzberg/4d-stop
📄Paper: https://arxiv.org/abs/2209.14858v1
🗒Dataset: https://paperswithcode.com/dataset/semantickitti
@ArtificialIntelligencedl
👍6🤔2❤1🔥1
📌 ExtrudeNet: Unsupervised Inverse Sketch-and-Extrude for Shape Parsing
An unsupervised end-to-end network for discovering sketch and extrude from point clouds.
⚙️Github: https://github.com/kimren227/extrudenet
📄Paper: https://arxiv.org/abs/2209.15632v1
@ArtificialIntelligencedl
An unsupervised end-to-end network for discovering sketch and extrude from point clouds.
conda create --name ExtrudeNet python=3.7
conda activate ExtrudeNet
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
conda install -c open3d-admin open3d
conda install numpy
conda install pymcubes
conda install tensorboard
conda install scipy
pip install tqdm
⚙️Github: https://github.com/kimren227/extrudenet
📄Paper: https://arxiv.org/abs/2209.15632v1
@ArtificialIntelligencedl
👍5❤1
✔️ From Face to Natural Image: Learning Real Degradation for Blind Image Super-Resolution
⚙️Github: https://github.com/csxmli2016/redegnet
📄Paper: https://arxiv.org/abs/2210.00752v1
🗒Dataset: https://paperswithcode.com/dataset/realsrset
@ArtificialIntelligencedl
git clone https://github.com/csxmli2016/ReDegNet
cd ReDegNet
conda create -n redeg python=3.8 -y
conda activate redeg
python setup.py develop
⚙️Github: https://github.com/csxmli2016/redegnet
📄Paper: https://arxiv.org/abs/2210.00752v1
🗒Dataset: https://paperswithcode.com/dataset/realsrset
@ArtificialIntelligencedl
👍4❤1🔥1
✔️ Real-Time Monitoring of User Stress, Heart Rate and Heart Rate Variability on Mobile Devices
⚙️Github: https://github.com/beamai/beamaisdk-ios
📄Paper: https://arxiv.org/abs/2210.01791v1
🗒Dataset: https://paperswithcode.com/dataset/ubfc-rppg
@ArtificialIntelligencedl
⚙️Github: https://github.com/beamai/beamaisdk-ios
📄Paper: https://arxiv.org/abs/2210.01791v1
🗒Dataset: https://paperswithcode.com/dataset/ubfc-rppg
@ArtificialIntelligencedl
GitHub
GitHub - beamai/BeamAISDK-iOS: Monitor user stress, heart rate and heart rate variability through the selfie camera in real-time.…
Monitor user stress, heart rate and heart rate variability through the selfie camera in real-time. Use the Beam AI SDK inside your iOS apps today! - beamai/BeamAISDK-iOS
👍5❤2🔥1
pip install vendi_score
⚙️Github: https://github.com/vertaix/vendi-score
📄Paper: https://arxiv.org/abs/2210.02410v1
🗒Dataset: https://paperswithcode.com/dataset/multinli
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤1🔥1
🎞 Inverting a Rolling Shutter Camera: Bring Rolling Shutter Images to High Framerate Global Shutter Video
⚙️Github: https://github.com/gitcvfb/rssr
📄Paper: https://arxiv.org/abs/2210.03040v1
🗒Dataset: https://paperswithcode.com/dataset/carla
@ArtificialIntelligencedl
⚙️Github: https://github.com/gitcvfb/rssr
📄Paper: https://arxiv.org/abs/2210.03040v1
🗒Dataset: https://paperswithcode.com/dataset/carla
@ArtificialIntelligencedl
👍4🔥1🥰1
🔥 Полезнейшая Подборка каналов
🖥 Machine learning
@ai_machinelearning_big_data – все о машинном обучении
@data_analysis_ml – все о анализе данных.
@machinelearning_ru – машинное обучении на русском от новичка до профессионала.
@machinelearning_interview – подготовка к собеседования Data Science
@datascienceiot – бесплатные книги Machine learning
@ArtificialIntelligencedl – канал о искусственном интеллекте
@neural – все о нейронных сетях
@machinee_learning – чат о машинном обучении
@datascienceml_jobs - работа ds, ml
🖥 Python
@pro_python_code – погружение в python
@python_job_interview – подготовка к Python собеседованию
@python_testit тесты на python
@pythonlbooks - книги Python
@Django_pythonl django
@python_djangojobs - работа Python
🖥 Java
@javatg - Java для програмистов
@javachats Java чат
@java_library - книги Java
@android_its Android разработка
@java_quizes - тесты Java
@Java_workit - работа Java
@progersit - шпаргалки ит
🖥 Javascript / front
@javascriptv - javascript изучение
@about_javascript - javascript продвинутый
@JavaScript_testit -тесты JS
@htmlcssjavas - web
@hashdev - web разработка
👣 Golang
@golang_interview - вопросы и ответы с собеседований по Go. Для всех уровней разработчиков.
@Golang_google - go для разработчиков
@golangtests - тесты и задачи GO
@golangl - чат Golang
@GolangJobsit - вакансии и работа GO
@golang_jobsgo - чат вакансий
@golang_books - книги Golang
@golang_speak - обсуждение задач Go
🖥 Linux
@linux_kal - чат kali linux
@linuxkalii - linux kali
@linux_read - книги linux
👷♂️ IT работа
@hr_itwork - ит-ваканнсии
🖥 SQL
@sqlhub - базы данных
@chat_sql - базы данных чат
🤡It memes
@memes_prog - ит-мемы
⚙️ Rust
@rust_code - язык программирования rust
@rust_chats - чат rust
#️⃣ c# c++
@csharp_ci - c# c++кодинг
@csharp_cplus чат
📓 Книги
@programming_books_it
@datascienceiot
@pythonlbooks
@golang_books
@frontendbooksit
@progersit
@linux_read
@java_library
@frontendbooksit
📢 English for coders
@english_forprogrammers - Английский для программистов
🖥 Github
@github_code
@ai_machinelearning_big_data – все о машинном обучении
@data_analysis_ml – все о анализе данных.
@machinelearning_ru – машинное обучении на русском от новичка до профессионала.
@machinelearning_interview – подготовка к собеседования Data Science
@datascienceiot – бесплатные книги Machine learning
@ArtificialIntelligencedl – канал о искусственном интеллекте
@neural – все о нейронных сетях
@machinee_learning – чат о машинном обучении
@datascienceml_jobs - работа ds, ml
@pro_python_code – погружение в python
@python_job_interview – подготовка к Python собеседованию
@python_testit тесты на python
@pythonlbooks - книги Python
@Django_pythonl django
@python_djangojobs - работа Python
@javatg - Java для програмистов
@javachats Java чат
@java_library - книги Java
@android_its Android разработка
@java_quizes - тесты Java
@Java_workit - работа Java
@progersit - шпаргалки ит
@javascriptv - javascript изучение
@about_javascript - javascript продвинутый
@JavaScript_testit -тесты JS
@htmlcssjavas - web
@hashdev - web разработка
@golang_interview - вопросы и ответы с собеседований по Go. Для всех уровней разработчиков.
@Golang_google - go для разработчиков
@golangtests - тесты и задачи GO
@golangl - чат Golang
@GolangJobsit - вакансии и работа GO
@golang_jobsgo - чат вакансий
@golang_books - книги Golang
@golang_speak - обсуждение задач Go
@linux_kal - чат kali linux
@linuxkalii - linux kali
@linux_read - книги linux
👷♂️ IT работа
@hr_itwork - ит-ваканнсии
@sqlhub - базы данных
@chat_sql - базы данных чат
🤡It memes
@memes_prog - ит-мемы
⚙️ Rust
@rust_code - язык программирования rust
@rust_chats - чат rust
#️⃣ c# c++
@csharp_ci - c# c++кодинг
@csharp_cplus чат
📓 Книги
@programming_books_it
@datascienceiot
@pythonlbooks
@golang_books
@frontendbooksit
@progersit
@linux_read
@java_library
@frontendbooksit
@english_forprogrammers - Английский для программистов
@github_code
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6👎2❤1🔥1
git clone https://github.com/SunghwanHong/CATs
cd CATs
conda create -n CATs python=3.6
conda activate CATs
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install -U scikit-image
pip install git+https://github.com/albumentations-team/albumentations
pip install tensorboardX termcolor timm tqdm requests pandas
⚙️Github: https://github.com/SunghwanHong/Cost-Aggregation-transformers
📄Paper: https://arxiv.org/abs/2210.02689v1
🗒Dataset: https://paperswithcode.com/dataset/nerf
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤2🔥2
A novel method, CANIFE, that uses canaries - carefully crafted samples by a strong adversary to evaluate the empirical privacy of a training round.
conda create -n "canife" python=3.9
conda activate canife
pip install -r ./requirements.txt
⚙️Github: https://github.com/facebookresearch/canife
📄Paper: https://arxiv.org/abs/2210.02912v1
🗒Dataset: https://paperswithcode.com/dataset/cifar-10
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤1🔥1
📄Paper: https://arxiv.org/abs/2210.03671v1
🗒Training: https://github.com/BertMoons/QuantizedNeuralNetworks-Keras-Tensorflow
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤1🔥1
pip install nerfacc
⚙️Github: https://github.com/kair-bair/nerfacc
📄Paper: https://arxiv.org/abs/2210.04847v1
🗒Dataset: https://paperswithcode.com/dataset/nerf
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - nerfstudio-project/nerfacc: A General NeRF Acceleration Toolbox in PyTorch.
A General NeRF Acceleration Toolbox in PyTorch. Contribute to nerfstudio-project/nerfacc development by creating an account on GitHub.
👍5❤1🔥1
⚙️Github: https://github.com/vlar-group/ogc
📄Paper: https://arxiv.org/abs/2210.04458v1
🗒Dataset: https://paperswithcode.com/dataset/kitti
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1🔥1
conda create --name nvvc python=3.8
conda activate nvvc
pip install -r requirements.txt
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
⚙️Github: https://github.com/yang-li-2000/understanding-embodied-reference-with-touch-line-transformer
📄Paper: https://arxiv.org/abs/2210.05668v2
🗒Dataset: https://paperswithcode.com/dataset/refcoco
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1🔥1
⚙️Github: https://github.com/facebookresearch/long_seq_mae
📄Paper: https://arxiv.org/abs/2210.07224v1
🗒Dataset: https://paperswithcode.com/dataset/places
@ArtificialIntelligencedl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1🔥1