Artificial Intelligence
16.3K subscribers
1.09K photos
7 videos
1 file
1.95K links
Artificial Intelligence

admin - @haarrp

@itchannels_telegram - πŸ”₯ best it channels

@ai_machinelearning_big_data - Machine learning channel

@pythonl - Our Python channel

@pythonlbooks- python ΠΊΠ½ΠΈΠ³ΠΈπŸ“š

@datascienceiot - ml πŸ“š

РКН: clck.ru/3FmwZw
Download Telegram
Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving Object Segmentation

Github: https://github.com/haomo-ai/motionseg3d

Paper: https://arxiv.org/abs/2207.02201v1

Dataset: https://paperswithcode.com/dataset/lidar-mos

@ArtificialIntelligencedl
πŸ‘5
✨ Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification

Tip-Adapter is a training-free adaption method for CLIP to conduct few-shot classification.

Github: https://github.com/gaopengcuhk/tip-adapter

Paper: https://arxiv.org/abs/2207.09519v1

Dataset: https://paperswithcode.com/dataset/oxford-102-flower
πŸ‘Ž1πŸ”₯1
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling

Github: https://github.com/timothyhtimothy/fast-vqa

Paper: https://arxiv.org/abs/2207.02595v1

Dataset: https://paperswithcode.com/dataset/kinetics

@ArtificialIntelligencedl
πŸ‘8
πŸ‘9πŸ”₯1πŸ₯°1
πŸš€ Domain Adaptive Video Segmentation via Temporal Pseudo Supervision

Github: https://github.com/xing0047/tps

Paper: https://arxiv.org/abs/2207.02372v1

Dataset : https://paperswithcode.com/dataset/cityscapesprobability

@ArtificialIntelligencedl
πŸ‘9
SFNet: Faster, Accurate, and Domain Agnostic Semantic Segmentation via Semantic Flow

Github: https://github.com/lxtGH/SFSegNets

Paper: https://arxiv.org/abs/2207.04415v1

Dataset : https://paperswithcode.com/dataset/idd

@ArtificialIntelligencedl
πŸ‘6
πŸ‘8
ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning

Github: https://github.com/openperceptionx/st-p3

Paper: https://arxiv.org/abs/2207.07601v1

Dataset: https://paperswithcode.com/dataset/carla

@ArtificialIntelligencedl
πŸ‘8
HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation

Github: https://github.com/amirhossein-kz/hiformer

Paper: https://arxiv.org/abs/2207.08518v1

Tasks: https://paperswithcode.com/task/medical-image-segmentation

@ArtificialIntelligencedl
❀8πŸ‘2
This media is not supported in your browser
VIEW IN TELEGRAM
Parameter Prediction for Unseen Deep Architectures

improved GHNs trained on our DeepNets-1M allow to predict parameters for diverse networks, even if they are very different from those used to train GHNs (e.g. ResNet-50)

Github: https://github.com/facebookresearch/ppuda

Paper: https://arxiv.org/abs/2207.10049v1

Tasks: https://paperswithcode.com/dataset/deepnets-1m

@ArtificialIntelligencedl
πŸ‘3
πŸŽ‘ Sobolev Training for Implicit Neural Representations with Approximated Image Derivatives

a training paradigm for INRs whose target output is image pixels, to encode image derivatives in addition to image values in the neural network.

Github: https://github.com/megvii-research/Sobolev_INRs

Paper: https://arxiv.org/abs/2207.10395v1

Dataset: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1

@ArtificialIntelligencedl
πŸ‘2
Forwarded from Machinelearning
🧿 Generative Multiplane Images: Making a 2D GAN 3D-Aware

What is really needed to make an existing 2D GAN 3D-aware? To answer this question, we modify a classical GAN, i.e., StyleGANv2, as little as possible. We find that only two modifications are absolutely necessary: 1) a multiplane image style generator branch which produces a set of alpha maps conditioned on their depth; 2) a pose-conditioned discriminator.

Github: https://github.com/apple/ml-gmpi

Paper: https://arxiv.org/abs/2207.10642v1

Dataset: https://paperswithcode.com/dataset/metfaces

Project: https://xiaoming-zhao.github.io/projects/gmpi/

Pretrained checkpoints: https://drive.google.com/drive/folders/1MEIjen0XOIW-kxEMfBUONnKYrkRATSR_

@ai_machinelearning_big_data
πŸ‘4❀1
Grounding Visual Representations with Texts for Domain Generalization

Github: https://github.com/mswzeus/gvrt

Paper: https://arxiv.org/abs/2207.10285v1

Dataset: https://paperswithcode.com/dataset/pacs

@ArtificialIntelligencedl
πŸ‘4
AutoAlignV2: Deformable Feature Aggregation for Dynamic Multi-Modal 3D Object Detection

Github: https://github.com/zehuichen123/autoalignv2

Paper: https://arxiv.org/abs/2207.10316v1

Dataset: https://paperswithcode.com/dataset/nuscenes

@ArtificialIntelligencedl
πŸ‘8
βœ… C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient Split Learning

Circular convolution-based batch-wise compression for SL (C3-SL) to compress multiple features into one single feature.

Github: https://github.com/WesleyHsieh0806/C3-SL

Paper: https://arxiv.org/abs/2207.12397v1

Dataset: https://github.com/WesleyHsieh0806/C3-SL#books-prepare-dataset

Pretrained Dataset: https://github.com/WesleyHsieh0806/C3-SL/blob/master/Pretrained_Dataset.md

@ArtificialIntelligencedl
πŸ‘2