Artificial Intelligence
16.3K subscribers
1.09K photos
7 videos
1 file
1.95K links
Artificial Intelligence

admin - @haarrp

@itchannels_telegram - πŸ”₯ best it channels

@ai_machinelearning_big_data - Machine learning channel

@pythonl - Our Python channel

@pythonlbooks- python ΠΊΠ½ΠΈΠ³ΠΈπŸ“š

@datascienceiot - ml πŸ“š

РКН: clck.ru/3FmwZw
Download Telegram
BigBIO: Biomedical Datasets

Currently BigBIO provides support for

more than 120 biomedical datasets
10 languages
Harmonized dataset schemas by task type
Metadata on licensing, coarse/fine-grained task types, domain, and more!


Github: https://github.com/bigscience-workshop/biomedical

Paper: https://arxiv.org/abs/2206.15076v1

Dataset: https://paperswithcode.com/dataset/bioasq

@ArtificialIntelligencedl
πŸ‘2πŸ”₯1
πŸš— MMFN: Multi-Modal Fusion Net for End-to-End Autonomous Driving

A novel approach to efficiently extract features from vectorized High-Definition (HD) maps and utilize them in the end-to-end driving tasks.

Github: https://github.com/Kin-Zhang/mmfn

Paper: https://arxiv.org/abs/2207.00186v1

Dataset: https://github.com/carla-simulator/leaderboard/issues/81

@ArtificialIntelligencedl
πŸ‘4
AlphaCode Explained: AI Code Generation

AlphaCode is DeepMind's new massive language model for generating code. It is similar to OpenAI Codex, except for in the paper they provide a bit more analysis. The field of NLP within AI and ML has exploded get a lot more papers all the time. This video can help you understand how AlphaCode works and what some of the key takeaways are.


youtube: https://www.youtube.com/watch?v=t3Yh56efKGI
blog post: https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode
paper: https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
πŸ‘7πŸ‘Ž3πŸ€”1
Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving Object Segmentation

Github: https://github.com/haomo-ai/motionseg3d

Paper: https://arxiv.org/abs/2207.02201v1

Dataset: https://paperswithcode.com/dataset/lidar-mos

@ArtificialIntelligencedl
πŸ‘5
✨ Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification

Tip-Adapter is a training-free adaption method for CLIP to conduct few-shot classification.

Github: https://github.com/gaopengcuhk/tip-adapter

Paper: https://arxiv.org/abs/2207.09519v1

Dataset: https://paperswithcode.com/dataset/oxford-102-flower
πŸ‘Ž1πŸ”₯1
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling

Github: https://github.com/timothyhtimothy/fast-vqa

Paper: https://arxiv.org/abs/2207.02595v1

Dataset: https://paperswithcode.com/dataset/kinetics

@ArtificialIntelligencedl
πŸ‘8
πŸ‘9πŸ”₯1πŸ₯°1
πŸš€ Domain Adaptive Video Segmentation via Temporal Pseudo Supervision

Github: https://github.com/xing0047/tps

Paper: https://arxiv.org/abs/2207.02372v1

Dataset : https://paperswithcode.com/dataset/cityscapesprobability

@ArtificialIntelligencedl
πŸ‘9
SFNet: Faster, Accurate, and Domain Agnostic Semantic Segmentation via Semantic Flow

Github: https://github.com/lxtGH/SFSegNets

Paper: https://arxiv.org/abs/2207.04415v1

Dataset : https://paperswithcode.com/dataset/idd

@ArtificialIntelligencedl
πŸ‘6
πŸ‘8
ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning

Github: https://github.com/openperceptionx/st-p3

Paper: https://arxiv.org/abs/2207.07601v1

Dataset: https://paperswithcode.com/dataset/carla

@ArtificialIntelligencedl
πŸ‘8