SETR - Pytorch
Github: https://github.com/920232796/setr-pytorch
Paper: https://arxiv.org/abs/2206.11520v1
Dataset: https://www.kaggle.com/c/carvana-image-masking-challenge/data
@ArtificialIntelligencedl
Github: https://github.com/920232796/setr-pytorch
Paper: https://arxiv.org/abs/2206.11520v1
Dataset: https://www.kaggle.com/c/carvana-image-masking-challenge/data
@ArtificialIntelligencedl
π3
Complementary datasets to COCO for object detection
Github: https://github.com/aliborji/coco_oi
Paper: https://arxiv.org/abs/2206.11473v1
Dataset: https://paperswithcode.com/dataset/coco
@ArtificialIntelligencedl
Github: https://github.com/aliborji/coco_oi
Paper: https://arxiv.org/abs/2206.11473v1
Dataset: https://paperswithcode.com/dataset/coco
@ArtificialIntelligencedl
π₯°1
β‘οΈ K-CAI NEURAL API
KCAI NEURAL API Keras based neural network API that will allow you to prototype
Github: https://github.com/joaopauloschuler/k-neural-api
Colab: https://colab.research.google.com/github/joaopauloschuler/k-neural-api/blob/master/examples/jupyter/simple_image_classification_with_any_dataset.ipynb
Paper: https://www.researchgate.net/publication/360226228_Grouped_Pointwise_Convolutions_Reduce_Parameters_in_Convolutional_Neural_Networks
Dataset: https://paperswithcode.com/dataset/plantdoc
@ArtificialIntelligencedl
KCAI NEURAL API Keras based neural network API that will allow you to prototype
Github: https://github.com/joaopauloschuler/k-neural-api
Colab: https://colab.research.google.com/github/joaopauloschuler/k-neural-api/blob/master/examples/jupyter/simple_image_classification_with_any_dataset.ipynb
Paper: https://www.researchgate.net/publication/360226228_Grouped_Pointwise_Convolutions_Reduce_Parameters_in_Convolutional_Neural_Networks
Dataset: https://paperswithcode.com/dataset/plantdoc
@ArtificialIntelligencedl
π₯4
π‘ Denoised MDPs: Learning World Models Better Than the World Itself
Github: https://github.com/facebookresearch/denoised_mdp
Project: https://ssnl.github.io/denoised_mdp
Paper: https://arxiv.org/abs/2206.15477v1
Dataset: https://paperswithcode.com/dataset/deepmind-control-suite
@ArtificialIntelligencedl
Github: https://github.com/facebookresearch/denoised_mdp
Project: https://ssnl.github.io/denoised_mdp
Paper: https://arxiv.org/abs/2206.15477v1
Dataset: https://paperswithcode.com/dataset/deepmind-control-suite
@ArtificialIntelligencedl
π4β€1
π² Forecasting Future World Events with Neural Networks
Github: https://github.com/andyzoujm/autocast
Paper: https://arxiv.org/abs/2206.15474v1
Dataset: https://people.eecs.berkeley.edu/~hendrycks/intervalqa.tar.gz
@ArtificialIntelligencedl
Github: https://github.com/andyzoujm/autocast
Paper: https://arxiv.org/abs/2206.15474v1
Dataset: https://people.eecs.berkeley.edu/~hendrycks/intervalqa.tar.gz
@ArtificialIntelligencedl
π4
BigBIO: Biomedical Datasets
Currently BigBIO provides support for
more than 120 biomedical datasets
10 languages
Harmonized dataset schemas by task type
Metadata on licensing, coarse/fine-grained task types, domain, and more!
Github: https://github.com/bigscience-workshop/biomedical
Paper: https://arxiv.org/abs/2206.15076v1
Dataset: https://paperswithcode.com/dataset/bioasq
@ArtificialIntelligencedl
Currently BigBIO provides support for
more than 120 biomedical datasets
10 languages
Harmonized dataset schemas by task type
Metadata on licensing, coarse/fine-grained task types, domain, and more!
Github: https://github.com/bigscience-workshop/biomedical
Paper: https://arxiv.org/abs/2206.15076v1
Dataset: https://paperswithcode.com/dataset/bioasq
@ArtificialIntelligencedl
π2π₯1
π MMFN: Multi-Modal Fusion Net for End-to-End Autonomous Driving
A novel approach to efficiently extract features from vectorized High-Definition (HD) maps and utilize them in the end-to-end driving tasks.
Github: https://github.com/Kin-Zhang/mmfn
Paper: https://arxiv.org/abs/2207.00186v1
Dataset: https://github.com/carla-simulator/leaderboard/issues/81
@ArtificialIntelligencedl
A novel approach to efficiently extract features from vectorized High-Definition (HD) maps and utilize them in the end-to-end driving tasks.
Github: https://github.com/Kin-Zhang/mmfn
Paper: https://arxiv.org/abs/2207.00186v1
Dataset: https://github.com/carla-simulator/leaderboard/issues/81
@ArtificialIntelligencedl
π4
AlphaCode Explained: AI Code Generation
AlphaCode is DeepMind's new massive language model for generating code. It is similar to OpenAI Codex, except for in the paper they provide a bit more analysis. The field of NLP within AI and ML has exploded get a lot more papers all the time. This video can help you understand how AlphaCode works and what some of the key takeaways are.
youtube: https://www.youtube.com/watch?v=t3Yh56efKGI
blog post: https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode
paper: https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
AlphaCode is DeepMind's new massive language model for generating code. It is similar to OpenAI Codex, except for in the paper they provide a bit more analysis. The field of NLP within AI and ML has exploded get a lot more papers all the time. This video can help you understand how AlphaCode works and what some of the key takeaways are.
youtube: https://www.youtube.com/watch?v=t3Yh56efKGI
blog post: https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode
paper: https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
π7π3π€1
PIAFusion: A progressive infrared and visible image fusion network based on illumination aware
Github: https://github.com/Linfeng-Tang/PIAFusion
Paper: https://www.sciencedirect.com/science/article/abs/pii/S156625352200032X
Pytorch: https://github.com/linklist2/PIAFusion_pytorch
@ArtificialIntelligencedl
Github: https://github.com/Linfeng-Tang/PIAFusion
Paper: https://www.sciencedirect.com/science/article/abs/pii/S156625352200032X
Pytorch: https://github.com/linklist2/PIAFusion_pytorch
@ArtificialIntelligencedl
π5
Disentangling Random and Cyclic Effects in Time-Lapse Sequences
Github: https://github.com/harskish/tlgan
Paper: https://arxiv.org/abs/2207.01413v1
Dataset: https://github.com/harskish/tlgan/blob/master/docs/PREPROC.md
Pre-trained models: https://drive.google.com/drive/folders/1ZA7Gk2OIFI2cANHEHHAm3AdWLMjJCExE?usp=sharing
@ArtificialIntelligencedl
Github: https://github.com/harskish/tlgan
Paper: https://arxiv.org/abs/2207.01413v1
Dataset: https://github.com/harskish/tlgan/blob/master/docs/PREPROC.md
Pre-trained models: https://drive.google.com/drive/folders/1ZA7Gk2OIFI2cANHEHHAm3AdWLMjJCExE?usp=sharing
@ArtificialIntelligencedl
π6π₯2
Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving Object Segmentation
Github: https://github.com/haomo-ai/motionseg3d
Paper: https://arxiv.org/abs/2207.02201v1
Dataset: https://paperswithcode.com/dataset/lidar-mos
@ArtificialIntelligencedl
Github: https://github.com/haomo-ai/motionseg3d
Paper: https://arxiv.org/abs/2207.02201v1
Dataset: https://paperswithcode.com/dataset/lidar-mos
@ArtificialIntelligencedl
π5
β¨ Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification
Tip-Adapter is a training-free adaption method for CLIP to conduct few-shot classification.
Github: https://github.com/gaopengcuhk/tip-adapter
Paper: https://arxiv.org/abs/2207.09519v1
Dataset: https://paperswithcode.com/dataset/oxford-102-flower
Tip-Adapter is a training-free adaption method for CLIP to conduct few-shot classification.
Github: https://github.com/gaopengcuhk/tip-adapter
Paper: https://arxiv.org/abs/2207.09519v1
Dataset: https://paperswithcode.com/dataset/oxford-102-flower
π1π₯1
Using Activation Functions in Neural Networks
https://machinelearningmastery.com/using-activation-functions-in-neural-networks/
@ArtificialIntelligencedl
https://machinelearningmastery.com/using-activation-functions-in-neural-networks/
@ArtificialIntelligencedl
π6
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
Github: https://github.com/timothyhtimothy/fast-vqa
Paper: https://arxiv.org/abs/2207.02595v1
Dataset: https://paperswithcode.com/dataset/kinetics
@ArtificialIntelligencedl
Github: https://github.com/timothyhtimothy/fast-vqa
Paper: https://arxiv.org/abs/2207.02595v1
Dataset: https://paperswithcode.com/dataset/kinetics
@ArtificialIntelligencedl
π8
Pre-training helps Bayesian optimization too
Github: https://github.com/google-research/hyperbo
Paper: https://arxiv.org/abs/2207.03084v1
Tensorflow Probability : https://www.tensorflow.org/probability
@ArtificialIntelligencedl
Github: https://github.com/google-research/hyperbo
Paper: https://arxiv.org/abs/2207.03084v1
Tensorflow Probability : https://www.tensorflow.org/probability
@ArtificialIntelligencedl
π9π₯1π₯°1
π Domain Adaptive Video Segmentation via Temporal Pseudo Supervision
Github: https://github.com/xing0047/tps
Paper: https://arxiv.org/abs/2207.02372v1
Dataset : https://paperswithcode.com/dataset/cityscapesprobability
@ArtificialIntelligencedl
Github: https://github.com/xing0047/tps
Paper: https://arxiv.org/abs/2207.02372v1
Dataset : https://paperswithcode.com/dataset/cityscapesprobability
@ArtificialIntelligencedl
π9
SFNet: Faster, Accurate, and Domain Agnostic Semantic Segmentation via Semantic Flow
Github: https://github.com/lxtGH/SFSegNets
Paper: https://arxiv.org/abs/2207.04415v1
Dataset : https://paperswithcode.com/dataset/idd
@ArtificialIntelligencedl
Github: https://github.com/lxtGH/SFSegNets
Paper: https://arxiv.org/abs/2207.04415v1
Dataset : https://paperswithcode.com/dataset/idd
@ArtificialIntelligencedl
π6
βοΈ Fast-Vid2Vid: Spatial-Temporal Compression for Video-to-Video Synthesis
Github: https://github.com/fast-vid2vid/fast-vid2vid
Paper: https://arxiv.org/abs/2207.05049v1
Project: https://fast-vid2vid.github.io/
Tasks : https://paperswithcode.com/task/video-to-video-synthesis
@ArtificialIntelligencedl
Github: https://github.com/fast-vid2vid/fast-vid2vid
Paper: https://arxiv.org/abs/2207.05049v1
Project: https://fast-vid2vid.github.io/
Tasks : https://paperswithcode.com/task/video-to-video-synthesis
@ArtificialIntelligencedl
π8
Masked Autoencoders that Listen
Github: https://github.com/facebookresearch/audiomae
Paper: https://arxiv.org/abs/2207.06405v1
Dataset : https://paperswithcode.com/dataset/audioset
@ArtificialIntelligencedl
Github: https://github.com/facebookresearch/audiomae
Paper: https://arxiv.org/abs/2207.06405v1
Dataset : https://paperswithcode.com/dataset/audioset
@ArtificialIntelligencedl
GitHub
GitHub - facebookresearch/AudioMAE: This repo hosts the code and models of "Masked Autoencoders that Listen".
This repo hosts the code and models of "Masked Autoencoders that Listen". - facebookresearch/AudioMAE
π7
Distance Learner: Incorporating Manifold Prior to Model Training
Github: https://github.com/microsoft/distance-learner
Paper: https://arxiv.org/abs/2207.06888v1
Project: https://fast-vid2vid.github.io/
@ArtificialIntelligencedl
Github: https://github.com/microsoft/distance-learner
Paper: https://arxiv.org/abs/2207.06888v1
Project: https://fast-vid2vid.github.io/
@ArtificialIntelligencedl
π8
ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning
Github: https://github.com/openperceptionx/st-p3
Paper: https://arxiv.org/abs/2207.07601v1
Dataset: https://paperswithcode.com/dataset/carla
@ArtificialIntelligencedl
Github: https://github.com/openperceptionx/st-p3
Paper: https://arxiv.org/abs/2207.07601v1
Dataset: https://paperswithcode.com/dataset/carla
@ArtificialIntelligencedl
π8