🦾 Global Tracking Transformers
Github: https://github.com/xingyizhou/GTR
Demo: https://github.com/facebookresearch/detectron2/blob/main/GETTING_STARTED.md
Paper: https://arxiv.org/abs/2203.13250v1
Dataset: https://paperswithcode.com/dataset/mot17
https://t.iss.one/ArtificialIntelligencedl
Github: https://github.com/xingyizhou/GTR
Demo: https://github.com/facebookresearch/detectron2/blob/main/GETTING_STARTED.md
Paper: https://arxiv.org/abs/2203.13250v1
Dataset: https://paperswithcode.com/dataset/mot17
https://t.iss.one/ArtificialIntelligencedl
⚡️ EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation
Github: https://github.com/tjiiv-cprg/epro-pnp
Paper: https://arxiv.org/abs/2203.13254v1
Dataset: https://paperswithcode.com/dataset/nuscenes
@ArtificialIntelligencedl
Github: https://github.com/tjiiv-cprg/epro-pnp
Paper: https://arxiv.org/abs/2203.13254v1
Dataset: https://paperswithcode.com/dataset/nuscenes
@ArtificialIntelligencedl
🎨 Autoregressive Image Generation using Residual Quantization
Github: https://github.com/kakaobrain/rq-vae-transformer
Pytorch: https://github.com/lucidrains/vector-quantize-pytorch
Paper: https://arxiv.org/abs/2203.01941v2
Dataset: https://paperswithcode.com/dataset/lsun
@ArtificialIntelligencedl
Github: https://github.com/kakaobrain/rq-vae-transformer
Pytorch: https://github.com/lucidrains/vector-quantize-pytorch
Paper: https://arxiv.org/abs/2203.01941v2
Dataset: https://paperswithcode.com/dataset/lsun
@ArtificialIntelligencedl
👍2
◾️ pyABC: Efficient and robust easy-to-use approximate Bayesian computation
Github: https://github.com/icb-dcm/pyabc
Paper: https://arxiv.org/abs/2203.13043v1
@ArtificialIntelligencedl
Github: https://github.com/icb-dcm/pyabc
Paper: https://arxiv.org/abs/2203.13043v1
@ArtificialIntelligencedl
👍3
🧍 Discovering Human-Object Interaction Concepts via Self-Compositional Learning
Github: https://github.com/zhihou7/HOI-CL
Paper: https://arxiv.org/abs/2203.14272v1
Dataset: https://paperswithcode.com/dataset/hico-det
@ArtificialIntelligencedl
Github: https://github.com/zhihou7/HOI-CL
Paper: https://arxiv.org/abs/2203.14272v1
Dataset: https://paperswithcode.com/dataset/hico-det
@ArtificialIntelligencedl
👍6
Semantic Line Detection Using Mirror Attention and Comparative Ranking and Matching
A novel algorithm to detect semantic lines is proposed in this paper. We develop three networks: detection network with mirror attention (D-Net) and comparative ranking and matching networks (R-Net and M-Net)
Github: https://github.com/dongkwonjin/Semantic-Line-DRM
Code: https://github.com/dongkwonjin/Semantic-Line-SLNet
Paper: https://arxiv.org/abs/2203.15285v1
Dataset: https://paperswithcode.com/dataset/sel
@ArtificialIntelligencedl
A novel algorithm to detect semantic lines is proposed in this paper. We develop three networks: detection network with mirror attention (D-Net) and comparative ranking and matching networks (R-Net and M-Net)
Github: https://github.com/dongkwonjin/Semantic-Line-DRM
Code: https://github.com/dongkwonjin/Semantic-Line-SLNet
Paper: https://arxiv.org/abs/2203.15285v1
Dataset: https://paperswithcode.com/dataset/sel
@ArtificialIntelligencedl
❤7
Semantic Line Detection Using Mirror Attention and Comparative Ranking and Matching
A novel approach where the two processes for activity classification and entity estimation are interactive and complementary.
Github: https://github.com/jhcho99/coformer
Architecture: https://github.com/jhcho99/gsrtr
Paper: https://arxiv.org/abs/2203.16518v1
Dataset: https://paperswithcode.com/dataset/framenet
@ArtificialIntelligencedl
A novel approach where the two processes for activity classification and entity estimation are interactive and complementary.
Github: https://github.com/jhcho99/coformer
Architecture: https://github.com/jhcho99/gsrtr
Paper: https://arxiv.org/abs/2203.16518v1
Dataset: https://paperswithcode.com/dataset/framenet
@ArtificialIntelligencedl
👍4
📱 Best it channels in Telegram
https://t.iss.one/ai_machinelearning_big_data - best ml channel
https://t.iss.one/ArtificialIntelligencedl - ai
https://t.iss.one/pythonl - largest python channel
https://t.iss.one/pro_python_code - python ru
https://t.iss.one/datascienceiot - ds, ml free books
https://t.iss.one/programming_books_it
https://t.iss.one/pythonlbooks - python books
https://t.iss.one/javascriptv - javascript channel
https://t.iss.one/about_javascript - advanced js
https://t.iss.one/JavaScript_testit - js tests
https://t.iss.one/Golang_google - Go channel
https://t.iss.one/golangl. -golang chat
https://t.iss.one/golang_jobsgo -golang jobs
https://t.iss.one/neural - neural nets
https://t.iss.one/hashdev - web development
https://t.iss.one/htmlcssjavas - web
https://t.iss.one/hr_itwork - jobs
https://t.iss.one/linux_kal - kali linux
https://t.iss.one/machinee_learning - ml chat
https://t.iss.one/linuxkalii - linux chat
https://t.iss.one/machinelearning_ru - ml ru
https://t.iss.one/python_testit - python tests
https://t.iss.one/csharp_ci- c#
https://t.iss.one/Machinelearningtest - machine learning test
https://t.iss.one/tensorflowblog - tensorflow
https://t.iss.one/Django_pythonl django
https://t.iss.one/javatg - java
https://t.iss.one/golangtests - Golang quizzes
https://t.iss.one/sqlhub - sql
https://t.iss.one/jsspeak - js chat
https://t.iss.one/memes_prog - it memes
https://t.iss.one/ai_machinelearning_big_data - best ml channel
https://t.iss.one/ArtificialIntelligencedl - ai
https://t.iss.one/pythonl - largest python channel
https://t.iss.one/pro_python_code - python ru
https://t.iss.one/datascienceiot - ds, ml free books
https://t.iss.one/programming_books_it
https://t.iss.one/pythonlbooks - python books
https://t.iss.one/javascriptv - javascript channel
https://t.iss.one/about_javascript - advanced js
https://t.iss.one/JavaScript_testit - js tests
https://t.iss.one/Golang_google - Go channel
https://t.iss.one/golangl. -golang chat
https://t.iss.one/golang_jobsgo -golang jobs
https://t.iss.one/neural - neural nets
https://t.iss.one/hashdev - web development
https://t.iss.one/htmlcssjavas - web
https://t.iss.one/hr_itwork - jobs
https://t.iss.one/linux_kal - kali linux
https://t.iss.one/machinee_learning - ml chat
https://t.iss.one/linuxkalii - linux chat
https://t.iss.one/machinelearning_ru - ml ru
https://t.iss.one/python_testit - python tests
https://t.iss.one/csharp_ci- c#
https://t.iss.one/Machinelearningtest - machine learning test
https://t.iss.one/tensorflowblog - tensorflow
https://t.iss.one/Django_pythonl django
https://t.iss.one/javatg - java
https://t.iss.one/golangtests - Golang quizzes
https://t.iss.one/sqlhub - sql
https://t.iss.one/jsspeak - js chat
https://t.iss.one/memes_prog - it memes
Telegram
Machinelearning
Погружаемся в машинное обучение и Data Science
Показываем как запускать любые LLm на пальцах.
По всем вопросам - @haarrp
@itchannels_telegram -🔥best channels
Реестр РКН: clck.ru/3Fmqri
Показываем как запускать любые LLm на пальцах.
По всем вопросам - @haarrp
@itchannels_telegram -🔥best channels
Реестр РКН: clck.ru/3Fmqri
👍7
💥 T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of sequence models.
Github: https://github.com/google-research/t5x
Paper: https://arxiv.org/abs/2203.17189v1
@ArtificialIntelligencedl
Github: https://github.com/google-research/t5x
Paper: https://arxiv.org/abs/2203.17189v1
@ArtificialIntelligencedl
👍4
💻 TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022)
Recent advances like StyleGAN have promoted the growth of controllable facial editing.
Github: https://github.com/billyxyb/transeditor
Paper: https://arxiv.org/abs/2203.17266v1
@ArtificialIntelligencedl
Recent advances like StyleGAN have promoted the growth of controllable facial editing.
Github: https://github.com/billyxyb/transeditor
Paper: https://arxiv.org/abs/2203.17266v1
@ArtificialIntelligencedl
👍6
🔍 Exploiting Explainable Metrics for Augmented SGD
A new explainability metrics that measure the redundant information in a network's layers and exploit this information to augment the Stochastic Gradient Descent
Project
Code: https://github.com/mahdihosseini/rmsgd
Paper: https://arxiv.org/pdf/2203.16723v1.pdf
Dataset: https://paperswithcode.com/dataset/mhist
@ArtificialIntelligencedl
A new explainability metrics that measure the redundant information in a network's layers and exploit this information to augment the Stochastic Gradient Descent
Project
Code: https://github.com/mahdihosseini/rmsgd
Paper: https://arxiv.org/pdf/2203.16723v1.pdf
Dataset: https://paperswithcode.com/dataset/mhist
@ArtificialIntelligencedl
👍5🔥1
🎆 Efficient Non-Autoregressive GAN Voice Conversion using VQWav2vec Features and Dynamic Convolution
Dynamic-GAN-VC (DYGAN-VC), uses a non-autoregressive structure and makes use of vector quantised embeddings obtained from a VQWav2vec model
Code: https://github.com/mingjiechen/dyganvc
Paper: https://arxiv.org/abs/2203.17172v1
Dataset: https://github.com/nii-yamagishilab/VCC2020-database
@ArtificialIntelligencedl
Dynamic-GAN-VC (DYGAN-VC), uses a non-autoregressive structure and makes use of vector quantised embeddings obtained from a VQWav2vec model
Code: https://github.com/mingjiechen/dyganvc
Paper: https://arxiv.org/abs/2203.17172v1
Dataset: https://github.com/nii-yamagishilab/VCC2020-database
@ArtificialIntelligencedl
👍6
➕ Rethinking Portrait Matting with Privacy Preserving
Code: https://github.com/mingjiechen/dyganvc
Paper: https://arxiv.org/abs/2203.16828v1
Dataset: https://github.com/vitae-transformer/vitae-transformer-matting#ppt-setting-and-p3m-10k-dataset
@ArtificialIntelligencedl
Code: https://github.com/mingjiechen/dyganvc
Paper: https://arxiv.org/abs/2203.16828v1
Dataset: https://github.com/vitae-transformer/vitae-transformer-matting#ppt-setting-and-p3m-10k-dataset
@ArtificialIntelligencedl
👍4
📊 MultiMAE: Multi-modal Multi-task Masked Autoencoders
An efficient and effective pre-training strategy for Vision Transformers
Project: https://multimae.epfl.ch/
Code: https://github.com/EPFL-VILAB/MultiMAE
Paper: https://arxiv.org/abs/2204.01678
Project: https://multimae.epfl.ch/
@ArtificialIntelligencedl
An efficient and effective pre-training strategy for Vision Transformers
Project: https://multimae.epfl.ch/
Code: https://github.com/EPFL-VILAB/MultiMAE
Paper: https://arxiv.org/abs/2204.01678
Project: https://multimae.epfl.ch/
@ArtificialIntelligencedl
👍3
📌 TESTR: Text Spotting Transformers
TExt Spotting TRansformers (TESTR), a generic end-to-end text spotting framework using Transformers for text detection and recognition in the wild
Code: https://github.com/mlpc-ucsd/testr
Paper: https://arxiv.org/abs/2204.01918
Dataset: https://ucsdcloud-my.sharepoint.com/:u:/g/personal/xiz102_ucsd_edu/EWgEM5BSRjBEua4B_qLrGR0BaombUL8K3d23ldXOb7wUNA?e=7VzH34
@ArtificialIntelligencedl
TExt Spotting TRansformers (TESTR), a generic end-to-end text spotting framework using Transformers for text detection and recognition in the wild
Code: https://github.com/mlpc-ucsd/testr
Paper: https://arxiv.org/abs/2204.01918
Dataset: https://ucsdcloud-my.sharepoint.com/:u:/g/personal/xiz102_ucsd_edu/EWgEM5BSRjBEua4B_qLrGR0BaombUL8K3d23ldXOb7wUNA?e=7VzH34
@ArtificialIntelligencedl
👍6👏1
MIMDet 🎭
Unleashing Vanilla Vision Transformer with Masked Image Modeling for Object Detection
Code: https://github.com/hustvl/mimdet
Paper: https://arxiv.org/abs/2204.02964v1
Dataset: https://paperswithcode.com/dataset/coco
Pretrained Model: https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base_full.pth
@ArtificialIntelligencedl
Unleashing Vanilla Vision Transformer with Masked Image Modeling for Object Detection
Code: https://github.com/hustvl/mimdet
Paper: https://arxiv.org/abs/2204.02964v1
Dataset: https://paperswithcode.com/dataset/coco
Pretrained Model: https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base_full.pth
@ArtificialIntelligencedl
🔥4❤1👍1
📐 FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessment
A new fine-grained dataset, called FineDiving, developed on diverse diving events with detailed annotations on action procedures
Code: https://github.com/xujinglin/finediving
Paper: https://arxiv.org/abs/2204.03646v1
Dataset: https://pan.baidu.com/s/1v85-np2FbS0J4UfAEiI4mg
@ArtificialIntelligencedl
A new fine-grained dataset, called FineDiving, developed on diverse diving events with detailed annotations on action procedures
Code: https://github.com/xujinglin/finediving
Paper: https://arxiv.org/abs/2204.03646v1
Dataset: https://pan.baidu.com/s/1v85-np2FbS0J4UfAEiI4mg
@ArtificialIntelligencedl
👍7
🖋 Context-Sensitive Temporal Feature Learning for Gait Recognition
Code: https://github.com/oliverhxh/cstl
Paper: https://arxiv.org/abs/2204.03270v1
@ArtificialIntelligencedl
Code: https://github.com/oliverhxh/cstl
Paper: https://arxiv.org/abs/2204.03270v1
@ArtificialIntelligencedl
❤5👍1
DaViT: Dual Attention Vision Transformer
Code: https://github.com/dingmyu/davit
Paper: https://arxiv.org/abs/2204.03645v1
Dataset: https://paperswithcode.com/dataset/ade20k
@ArtificialIntelligencedl
Code: https://github.com/dingmyu/davit
Paper: https://arxiv.org/abs/2204.03645v1
Dataset: https://paperswithcode.com/dataset/ade20k
@ArtificialIntelligencedl
👍4
Vision Transformers for Single Image Dehazing
Code: https://github.com/IDKiro/DehazeFormer
Paper: https://arxiv.org/abs/2204.03883v1
Dataset: https://paperswithcode.com/dataset/rs-haze
@ArtificialIntelligencedl
Code: https://github.com/IDKiro/DehazeFormer
Paper: https://arxiv.org/abs/2204.03883v1
Dataset: https://paperswithcode.com/dataset/rs-haze
@ArtificialIntelligencedl
SuperGAT
A self-supervised graph attention network (SuperGAT), an improved graph attention model for noisy graph
Code: https://github.com/dongkwan-kim/SuperGAT
Paper: https://arxiv.org/abs/2204.04879v1
Dataset: https://paperswithcode.com/dataset/ogb
@ArtificialIntelligencedl
A self-supervised graph attention network (SuperGAT), an improved graph attention model for noisy graph
Code: https://github.com/dongkwan-kim/SuperGAT
Paper: https://arxiv.org/abs/2204.04879v1
Dataset: https://paperswithcode.com/dataset/ogb
@ArtificialIntelligencedl
👍8😁1