The Neural Testbed
Github: https://github.com/deepmind/neural_testbed
Paper: https://arxiv.org/abs/2202.13509v1
@ArtificialIntelligencedl
Github: https://github.com/deepmind/neural_testbed
Paper: https://arxiv.org/abs/2202.13509v1
@ArtificialIntelligencedl
FastFold: Reducing AlphaFold Training Time from 11 Days to 67 Hours
Github: https://github.com/hpcaitech/fastfold
Paper: https://arxiv.org/abs/2203.00854v1
@ArtificialIntelligencedl
Github: https://github.com/hpcaitech/fastfold
Paper: https://arxiv.org/abs/2203.00854v1
@ArtificialIntelligencedl
💡 KG Inductive Link Prediction Challenge (ILPC) 2022
Github: https://github.com/pykeen/ilpc2022
Paper: https://arxiv.org/abs/2203.01520v1
@ArtificialIntelligencedl
Github: https://github.com/pykeen/ilpc2022
Paper: https://arxiv.org/abs/2203.01520v1
@ArtificialIntelligencedl
Hello everyone. My name is Andrew and for several years I've been working on to make the learning path for ML
easier.
I wrote a manual on machine learning that
everyone understands - Machine Learning Simplified Book. The main purpose of my book is to build an intuitive
understanding of how algorithms work through basic examples. In order to understand the presented material,
it is enough to know basic mathematics and linear algebra.
After reading this book, you will know the basics of supervised learning, understand complex mathematical models, understand the entire pipeline of a typical ML project, and also be able to share your knowledge with colleagues from related industries and with technical
professionals.
And for those who find the theoretical part not enough - I supplemented the book with a repository on GitHub,
which has Python implementation of every method and algorithm that I describe in each chapter.
You can read the book absolutely free at the link below:
-> https://themlsbook.com
I’ve also started my Instagram page - feel free to subscribe! it’s mostly in Russian but I’ll be posting in English too.
-> https://instagram.com/5x12
easier.
I wrote a manual on machine learning that
everyone understands - Machine Learning Simplified Book. The main purpose of my book is to build an intuitive
understanding of how algorithms work through basic examples. In order to understand the presented material,
it is enough to know basic mathematics and linear algebra.
After reading this book, you will know the basics of supervised learning, understand complex mathematical models, understand the entire pipeline of a typical ML project, and also be able to share your knowledge with colleagues from related industries and with technical
professionals.
And for those who find the theoretical part not enough - I supplemented the book with a repository on GitHub,
which has Python implementation of every method and algorithm that I describe in each chapter.
You can read the book absolutely free at the link below:
-> https://themlsbook.com
I’ve also started my Instagram page - feel free to subscribe! it’s mostly in Russian but I’ll be posting in English too.
-> https://instagram.com/5x12
👍1
KG Inductive Link Prediction Challenge (ILPC) 2022
Github: https://github.com/pykeen/ilpc2022
Paper: https://github.com/pykeen/ilpc2022
@ArtificialIntelligencedl
Github: https://github.com/pykeen/ilpc2022
Paper: https://github.com/pykeen/ilpc2022
@ArtificialIntelligencedl
👍1
Как выявлять аномалии в разных распределениях с помощью машинного обучения? 🧐
10 марта в 20:00 (мск) пройдет открытый вебинар «Anomaly Detection». Его проведет Артем Васильев, ведущий инженер разработки. С экспертом мы обсудим такие вопросы, как постановка задачи, нахождение аномалий в разных распределениях, SVD-feature extraction, Autoencoder, PaDiM.
🔥 Продолжить получать новые знания вы можете на онлайн-курсе «Компьютерное зрение» для специалистов в сфере Machine Learning, которые хотят специализироваться на компьютерном зрении или систематизировать свои знания.
Чтобы участвовать, зарегистрируйтесь 👉 https://otus.pw/pd5h/
10 марта в 20:00 (мск) пройдет открытый вебинар «Anomaly Detection». Его проведет Артем Васильев, ведущий инженер разработки. С экспертом мы обсудим такие вопросы, как постановка задачи, нахождение аномалий в разных распределениях, SVD-feature extraction, Autoencoder, PaDiM.
🔥 Продолжить получать новые знания вы можете на онлайн-курсе «Компьютерное зрение» для специалистов в сфере Machine Learning, которые хотят специализироваться на компьютерном зрении или систематизировать свои знания.
Чтобы участвовать, зарегистрируйтесь 👉 https://otus.pw/pd5h/
Official PyTorch implementation for Graph Matching based GNN Pre-Training.
Github: https://github.com/rucaibox/gmpt
Paper: https://arxiv.org/abs/2203.01597v1
@ArtificialIntelligencedl
Github: https://github.com/rucaibox/gmpt
Paper: https://arxiv.org/abs/2203.01597v1
@ArtificialIntelligencedl
Uncertainty Estimation for Heatmap-based Landmark Localization
Github: https://github.com/pykale/pykale
Documentatuin: https://github.com/pykale/pykale
Paper: https://arxiv.org/abs/2203.02351v1
Dataset: https://paperswithcode.com/dataset/kitti
@ArtificialIntelligencedl
Github: https://github.com/pykale/pykale
Documentatuin: https://github.com/pykale/pykale
Paper: https://arxiv.org/abs/2203.02351v1
Dataset: https://paperswithcode.com/dataset/kitti
@ArtificialIntelligencedl
👍1
🧊 DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
Github: https://github.com/IDEACVR/DINO
Paper: https://arxiv.org/abs/2203.03605
Dataset: https://paperswithcode.com/dataset/coco
@ArtificialIntelligencedl
Github: https://github.com/IDEACVR/DINO
Paper: https://arxiv.org/abs/2203.03605
Dataset: https://paperswithcode.com/dataset/coco
@ArtificialIntelligencedl
New Insights on Reducing Abrupt Representation Change in Online Continual Learning
Github: https://github.com/pclucas14/aml
Paper: https://arxiv.org/abs/2203.03798v1
@ArtificialIntelligencedl
Github: https://github.com/pclucas14/aml
Paper: https://arxiv.org/abs/2203.03798v1
@ArtificialIntelligencedl
Restoring and attributing ancient texts using deep neural networks
Github: https://github.com/deepmind/ithaca
Paper: https://www.nature.com/articles/s41586-022-04448-z
Colab: https://colab.research.google.com/github/deepmind/ithaca/blob/master/colabs/ithaca_inference.ipynb
@ArtificialIntelligencedl
Github: https://github.com/deepmind/ithaca
Paper: https://www.nature.com/articles/s41586-022-04448-z
Colab: https://colab.research.google.com/github/deepmind/ithaca/blob/master/colabs/ithaca_inference.ipynb
@ArtificialIntelligencedl
On Embeddings for Numerical Features in Tabular Deep Learning
Github: https://github.com/yura52/rtdl
Documentatuin: https://yura52.github.io/rtdl
Paper: https://arxiv.org/abs/2203.05556v1
@ArtificialIntelligencedl
Github: https://github.com/yura52/rtdl
Documentatuin: https://yura52.github.io/rtdl
Paper: https://arxiv.org/abs/2203.05556v1
@ArtificialIntelligencedl
GitHub
GitHub - Yura52/rtdl: Research on Tabular Deep Learning (Python package & papers)
Research on Tabular Deep Learning (Python package & papers) - GitHub - Yura52/rtdl: Research on Tabular Deep Learning (Python package & papers)
Back to Reality: Weakly-supervised 3D Object Detection with Shape-guided Label Enhancement
Github: https://github.com/xuxw98/backtoreality
Paper: https://arxiv.org/abs/2203.05238v1
Dataset: https://paperswithcode.com/dataset/modelnet
@ArtificialIntelligencedl
Github: https://github.com/xuxw98/backtoreality
Paper: https://arxiv.org/abs/2203.05238v1
Dataset: https://paperswithcode.com/dataset/modelnet
@ArtificialIntelligencedl
Conditional Prompt Learning for Vision-Language Models
Github: https://github.com/kaiyangzhou/coop
Paper: https://arxiv.org/abs/2203.05557v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
Github: https://github.com/kaiyangzhou/coop
Paper: https://arxiv.org/abs/2203.05557v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
Enhancing Adversarial Training with Second-Order Statistics of Weights
Github: https://github.com/alexkael/s2o
Paper: https://arxiv.org/abs/2203.06020v1
Dataset: https://paperswithcode.com/dataset/cifar-10
@ArtificialIntelligencedl
Github: https://github.com/alexkael/s2o
Paper: https://arxiv.org/abs/2203.06020v1
Dataset: https://paperswithcode.com/dataset/cifar-10
@ArtificialIntelligencedl
Accelerating DETR Convergence via Semantic-Aligned Matching
Github: https://github.com/ZhangGongjie/SAM-DETR
Documentatuin: https://cocodataset.org/
Paper: https://arxiv.org/abs/2203.06883v1
@ArtificialIntelligencedl
Github: https://github.com/ZhangGongjie/SAM-DETR
Documentatuin: https://cocodataset.org/
Paper: https://arxiv.org/abs/2203.06883v1
@ArtificialIntelligencedl
Bamboo: Building Mega-Scale Vision Dataset Continually with Human-Machine Synergy
Github: https://github.com/davidzhangyuanhan/bamboo
Project: https://opengvlab.shlab.org.cn/bamboo/home
Paper: https://arxiv.org/abs/2203.07845
@ArtificialIntelligencedl
Github: https://github.com/davidzhangyuanhan/bamboo
Project: https://opengvlab.shlab.org.cn/bamboo/home
Paper: https://arxiv.org/abs/2203.07845
@ArtificialIntelligencedl
Context-Aware Drift Detection
Github: https://github.com/SeldonIO/alibi-detect
Project: https://docs.seldon.io/projects/alibi-detect/en/latest/
Paper: https://arxiv.org/abs/2203.08644v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
Github: https://github.com/SeldonIO/alibi-detect
Project: https://docs.seldon.io/projects/alibi-detect/en/latest/
Paper: https://arxiv.org/abs/2203.08644v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
➡️ One-Shot Adaptation of GAN in Just One CLIP
A novel single-shot GAN adaptation method through unified CLIP space manipulations.
Github: https://github.com/submission6378/oneshotclip
Paper: https://arxiv.org/abs/2203.09301v1
Dataset: https://paperswithcode.com/dataset/ffhq
Adapted models: https://drive.google.com/drive/folders/1svLJjuuK-yCCJ7Xq9l4Dy4gSuzplK_7i?usp=sharing
@ArtificialIntelligencedl
A novel single-shot GAN adaptation method through unified CLIP space manipulations.
Github: https://github.com/submission6378/oneshotclip
Paper: https://arxiv.org/abs/2203.09301v1
Dataset: https://paperswithcode.com/dataset/ffhq
Adapted models: https://drive.google.com/drive/folders/1svLJjuuK-yCCJ7Xq9l4Dy4gSuzplK_7i?usp=sharing
@ArtificialIntelligencedl
🔹 TensoRF: Tensorial Radiance Fields
A novel approach to model and reconstruct radiance fields
Github: https://github.com/apchenstu/TensoRF
Paper: https://arxiv.org/abs/2203.09517v1
Dataset: https://paperswithcode.com/dataset/ffhq
Project page: https://apchenstu.github.io/TensoRF/
https://t.iss.one/ArtificialIntelligencedl
A novel approach to model and reconstruct radiance fields
Github: https://github.com/apchenstu/TensoRF
Paper: https://arxiv.org/abs/2203.09517v1
Dataset: https://paperswithcode.com/dataset/ffhq
Project page: https://apchenstu.github.io/TensoRF/
https://t.iss.one/ArtificialIntelligencedl
💬 Under the Morphosyntactic Lens: A Multifaceted Evaluation of Gender Bias in Speech Translation
Github: https://github.com/mgaido91/FBK-fairseq-ST
Paper: https://arxiv.org/abs/2203.09866v1
Dataset: https://paperswithcode.com/dataset/winobias
Project page: https://apchenstu.github.io/TensoRF/
@ArtificialIntelligencedl
Github: https://github.com/mgaido91/FBK-fairseq-ST
Paper: https://arxiv.org/abs/2203.09866v1
Dataset: https://paperswithcode.com/dataset/winobias
Project page: https://apchenstu.github.io/TensoRF/
@ArtificialIntelligencedl