Artificial Intelligence
16.3K subscribers
1.09K photos
7 videos
1 file
1.95K links
Artificial Intelligence

admin - @haarrp

@itchannels_telegram - 🔥 best it channels

@ai_machinelearning_big_data - Machine learning channel

@pythonl - Our Python channel

@pythonlbooks- python книги📚

@datascienceiot - ml 📚

РКН: clck.ru/3FmwZw
Download Telegram
Bag Graph: Multiple Instance Learning using Bayesian Graph Neural Networks

Github: https://github.com/networkslab/baggraph

Paper: https://arxiv.org/abs/2202.11132v1


@ai_machinelearning_big_data
DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on Camera-LiDAR Fusion with Deep Association

Github: https://github.com/wangxiyang2022/DeepFusionMOT

Paper: https://arxiv.org/abs/2202.12100v1

Dataset: https://paperswithcode.com/dataset/kitti

@ArtificialIntelligencedl
👍1
FastFold: Reducing AlphaFold Training Time from 11 Days to 67 Hours

Github: https://github.com/hpcaitech/fastfold

Paper: https://arxiv.org/abs/2203.00854v1

@ArtificialIntelligencedl
💡 KG Inductive Link Prediction Challenge (ILPC) 2022

Github: https://github.com/pykeen/ilpc2022

Paper: https://arxiv.org/abs/2203.01520v1

@ArtificialIntelligencedl
Hello everyone. My name is Andrew and for several years I've been working on to make the learning path for ML
easier.

I wrote a manual on machine learning that
everyone understands - Machine Learning Simplified Book. The main purpose of my book is to build an intuitive
understanding of how algorithms work through basic examples. In order to understand the presented material,
it is enough to know basic mathematics and linear algebra.

After reading this book, you will know the basics of supervised learning, understand complex mathematical models, understand the entire pipeline of a typical ML project, and also be able to share your knowledge with colleagues from related industries and with technical
professionals.

And for those who find the theoretical part not enough - I supplemented the book with a repository on GitHub,
which has Python implementation of every method and algorithm that I describe in each chapter.

You can read the book absolutely free at the link below:
-> https://themlsbook.com

I’ve also started my Instagram page - feel free to subscribe! it’s mostly in Russian but I’ll be posting in English too.
-> https://instagram.com/5x12
👍1
KG Inductive Link Prediction Challenge (ILPC) 2022

Github: https://github.com/pykeen/ilpc2022

Paper: https://github.com/pykeen/ilpc2022

@ArtificialIntelligencedl
👍1
Как выявлять аномалии в разных распределениях с помощью машинного обучения? 🧐

10 марта в 20:00 (мск) пройдет открытый вебинар «Anomaly Detection». Его проведет Артем Васильев, ведущий инженер разработки. С экспертом мы обсудим такие вопросы, как постановка задачи, нахождение аномалий в разных распределениях, SVD-feature extraction, Autoencoder, PaDiM.

🔥 Продолжить получать новые знания вы можете на онлайн-курсе «Компьютерное зрение» для специалистов в сфере Machine Learning, которые хотят специализироваться на компьютерном зрении или систематизировать свои знания.

Чтобы участвовать, зарегистрируйтесь 👉 https://otus.pw/pd5h/
Official PyTorch implementation for Graph Matching based GNN Pre-Training.

Github: https://github.com/rucaibox/gmpt

Paper: https://arxiv.org/abs/2203.01597v1

@ArtificialIntelligencedl
🧊 DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

Github: https://github.com/IDEACVR/DINO

Paper: https://arxiv.org/abs/2203.03605

Dataset: https://paperswithcode.com/dataset/coco

@ArtificialIntelligencedl
New Insights on Reducing Abrupt Representation Change in Online Continual Learning

Github: https://github.com/pclucas14/aml

Paper: https://arxiv.org/abs/2203.03798v1

@ArtificialIntelligencedl
Back to Reality: Weakly-supervised 3D Object Detection with Shape-guided Label Enhancement

Github: https://github.com/xuxw98/backtoreality

Paper: https://arxiv.org/abs/2203.05238v1

Dataset: https://paperswithcode.com/dataset/modelnet

@ArtificialIntelligencedl
Enhancing Adversarial Training with Second-Order Statistics of Weights

Github: https://github.com/alexkael/s2o

Paper: https://arxiv.org/abs/2203.06020v1

Dataset: https://paperswithcode.com/dataset/cifar-10

@ArtificialIntelligencedl