Weakly-Supervised Semantic Segmentation with Visual Words Learning and Hybrid Pooling
Github: https://github.com/rulixiang/vwe/tree/master/v2
Paper: https://arxiv.org/abs/2202.04812v1
Dataset: https://paperswithcode.com/dataset/pascal-voc
@ArtificialIntelligencedl
Github: https://github.com/rulixiang/vwe/tree/master/v2
Paper: https://arxiv.org/abs/2202.04812v1
Dataset: https://paperswithcode.com/dataset/pascal-voc
@ArtificialIntelligencedl
Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging
Github: https://github.com/aangelopoulos/im2im-uq
Paper: https://arxiv.org/abs/2202.05265v1
Dataset: https://paperswithcode.com/dataset/fastmri
@ArtificialIntelligencedl
Github: https://github.com/aangelopoulos/im2im-uq
Paper: https://arxiv.org/abs/2202.05265v1
Dataset: https://paperswithcode.com/dataset/fastmri
@ArtificialIntelligencedl
The Shapley Value in Machine Learning
Github: https://github.com/benedekrozemberczki/shapley
Documentation: https://shapley.readthedocs.io/
Paper: https://arxiv.org/abs/2101.02153
Help: https://shapley.readthedocs.io/en/latest/notes/resources.html
@ArtificialIntelligencedl
Github: https://github.com/benedekrozemberczki/shapley
Documentation: https://shapley.readthedocs.io/
Paper: https://arxiv.org/abs/2101.02153
Help: https://shapley.readthedocs.io/en/latest/notes/resources.html
@ArtificialIntelligencedl
3 февраля – 3 апреля участвуйте в соревновании Data Fusion Contest 2022 от ВТБ с призовым фондом в 2 000 000 рублей!
Прокачайтесь в современном индустриальном ML на прорывной задаче матчинга.
Вас ждёт 3 задачи, 2 специальные номинации и уникальный датасет от ВТБ, «Ростелекома» и Platforma.
Data Fusion Contest 2022 — это отличная возможность:
🔹 Принять участие в большом онлайн-соревновании с крупными призовыми
🔹 Прокачаться в DS/ML и новых методах на практической задаче
🔹 Участвовать в митапах, воркшопах и гостевых лекциях
🔹 Выиграть классный мерч
Подробности и регистрация — на сайте.
Прокачайтесь в современном индустриальном ML на прорывной задаче матчинга.
Вас ждёт 3 задачи, 2 специальные номинации и уникальный датасет от ВТБ, «Ростелекома» и Platforma.
Data Fusion Contest 2022 — это отличная возможность:
🔹 Принять участие в большом онлайн-соревновании с крупными призовыми
🔹 Прокачаться в DS/ML и новых методах на практической задаче
🔹 Участвовать в митапах, воркшопах и гостевых лекциях
🔹 Выиграть классный мерч
Подробности и регистрация — на сайте.
🔹 Expediting Vision Transformers via Token Reorganizations
Github: https://github.com/youweiliang/evit
Paper: https://arxiv.org/abs/2202.07800v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
Github: https://github.com/youweiliang/evit
Paper: https://arxiv.org/abs/2202.07800v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
🔦 cosFormer: Rethinking Softmax in Attention
Github: https://github.com/davidsvy/cosformer-pytorch
Paper: https://arxiv.org/abs/2202.08791v1
@ArtificialIntelligencedl
Github: https://github.com/davidsvy/cosformer-pytorch
Paper: https://arxiv.org/abs/2202.08791v1
@ArtificialIntelligencedl
🛠 ZeroGen: Efficient Zero-shot Learning via Dataset Generation
Github: https://github.com/jiacheng-ye/zerogen
Paper: https://arxiv.org/abs/2202.07922v1
Dataset: https://paperswithcode.com/dataset/sst
@ArtificialIntelligencedl
Github: https://github.com/jiacheng-ye/zerogen
Paper: https://arxiv.org/abs/2202.07922v1
Dataset: https://paperswithcode.com/dataset/sst
@ArtificialIntelligencedl
TransCG: A Large-Scale Real-World Dataset for Transparent Object Depth Completion and Grasping
Github: https://github.com/galaxies99/transcg
Paper: https://arxiv.org/pdf/2202.08471v1.pdf
Dataset: https://graspnet.net/transcg
@ArtificialIntelligencedl
Github: https://github.com/galaxies99/transcg
Paper: https://arxiv.org/pdf/2202.08471v1.pdf
Dataset: https://graspnet.net/transcg
@ArtificialIntelligencedl
GitHub
GitHub - Galaxies99/TransCG: TransCG: A Large-Scale Real-World Dataset for Transparent Object Depth Completion and A Grasping Baseline
TransCG: A Large-Scale Real-World Dataset for Transparent Object Depth Completion and A Grasping Baseline - GitHub - Galaxies99/TransCG: TransCG: A Large-Scale Real-World Dataset for Transparent Ob...
Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization
Github: https://github.com/rail-berkeley/design-bench
Paper: https://arxiv.org/abs/2202.08450v1
Dataset: https://paperswithcode.com/dataset/openai-gym
@ArtificialIntelligencedl
Github: https://github.com/rail-berkeley/design-bench
Paper: https://arxiv.org/abs/2202.08450v1
Dataset: https://paperswithcode.com/dataset/openai-gym
@ArtificialIntelligencedl
PointSCNet: Point Cloud Structure and Correlation Learning Based on Space Filling Curve-Guided Sampling
Github: https://github.com/Chenguoz/PointSCNet
Paper: https://arxiv.org/abs/2202.10251v1
Dataset: https://paperswithcode.com/dataset/modelnet
@ArtificialIntelligencedl
Github: https://github.com/Chenguoz/PointSCNet
Paper: https://arxiv.org/abs/2202.10251v1
Dataset: https://paperswithcode.com/dataset/modelnet
@ArtificialIntelligencedl
EIGNN: Efficient Infinite-Depth Graph Neural Networks
Github: https://github.com/liu-jc/eignn
Paper: https://arxiv.org/abs/2202.10720v1
Dataset: https://paperswithcode.com/dataset/ppi
@ArtificialIntelligencedl
Github: https://github.com/liu-jc/eignn
Paper: https://arxiv.org/abs/2202.10720v1
Dataset: https://paperswithcode.com/dataset/ppi
@ArtificialIntelligencedl
GitHub
GitHub - liu-jc/EIGNN: The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021) - liu-jc/EIGNN
Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation
Github: https://github.com/tzer-anonbot/tzer
Docs: https://tzer.readthedocs.io/en/latest/markdown/artifact.html
Paper: https://arxiv.org/abs/2202.09947v1
@ai_machinelearning_big_data
Github: https://github.com/tzer-anonbot/tzer
Docs: https://tzer.readthedocs.io/en/latest/markdown/artifact.html
Paper: https://arxiv.org/abs/2202.09947v1
@ai_machinelearning_big_data
GitHub
GitHub - Tzer-AnonBot/tzer: Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“. - Tzer-AnonBot/tzer
Bag Graph: Multiple Instance Learning using Bayesian Graph Neural Networks
Github: https://github.com/networkslab/baggraph
Paper: https://arxiv.org/abs/2202.11132v1
@ai_machinelearning_big_data
Github: https://github.com/networkslab/baggraph
Paper: https://arxiv.org/abs/2202.11132v1
@ai_machinelearning_big_data
✅ As-ViT: Auto-scaling Vision Transformers without Training
Github: https://github.com/vita-group/asvit
Paper: https://arxiv.org/abs/2202.11921v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
Github: https://github.com/vita-group/asvit
Paper: https://arxiv.org/abs/2202.11921v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on Camera-LiDAR Fusion with Deep Association
Github: https://github.com/wangxiyang2022/DeepFusionMOT
Paper: https://arxiv.org/abs/2202.12100v1
Dataset: https://paperswithcode.com/dataset/kitti
@ArtificialIntelligencedl
Github: https://github.com/wangxiyang2022/DeepFusionMOT
Paper: https://arxiv.org/abs/2202.12100v1
Dataset: https://paperswithcode.com/dataset/kitti
@ArtificialIntelligencedl
👍1
Overcoming catastrophic forgetting in neural networks
Github: https://github.com/ContinualAI/avalanche
Paper: https://arxiv.org/abs/1612.00796v2
Dataset: https://paperswithcode.com/dataset/asc-til-19-tasks
@ArtificialIntelligencedl
Github: https://github.com/ContinualAI/avalanche
Paper: https://arxiv.org/abs/1612.00796v2
Dataset: https://paperswithcode.com/dataset/asc-til-19-tasks
@ArtificialIntelligencedl
The Neural Testbed
Github: https://github.com/deepmind/neural_testbed
Paper: https://arxiv.org/abs/2202.13509v1
@ArtificialIntelligencedl
Github: https://github.com/deepmind/neural_testbed
Paper: https://arxiv.org/abs/2202.13509v1
@ArtificialIntelligencedl
FastFold: Reducing AlphaFold Training Time from 11 Days to 67 Hours
Github: https://github.com/hpcaitech/fastfold
Paper: https://arxiv.org/abs/2203.00854v1
@ArtificialIntelligencedl
Github: https://github.com/hpcaitech/fastfold
Paper: https://arxiv.org/abs/2203.00854v1
@ArtificialIntelligencedl
💡 KG Inductive Link Prediction Challenge (ILPC) 2022
Github: https://github.com/pykeen/ilpc2022
Paper: https://arxiv.org/abs/2203.01520v1
@ArtificialIntelligencedl
Github: https://github.com/pykeen/ilpc2022
Paper: https://arxiv.org/abs/2203.01520v1
@ArtificialIntelligencedl
Hello everyone. My name is Andrew and for several years I've been working on to make the learning path for ML
easier.
I wrote a manual on machine learning that
everyone understands - Machine Learning Simplified Book. The main purpose of my book is to build an intuitive
understanding of how algorithms work through basic examples. In order to understand the presented material,
it is enough to know basic mathematics and linear algebra.
After reading this book, you will know the basics of supervised learning, understand complex mathematical models, understand the entire pipeline of a typical ML project, and also be able to share your knowledge with colleagues from related industries and with technical
professionals.
And for those who find the theoretical part not enough - I supplemented the book with a repository on GitHub,
which has Python implementation of every method and algorithm that I describe in each chapter.
You can read the book absolutely free at the link below:
-> https://themlsbook.com
I’ve also started my Instagram page - feel free to subscribe! it’s mostly in Russian but I’ll be posting in English too.
-> https://instagram.com/5x12
easier.
I wrote a manual on machine learning that
everyone understands - Machine Learning Simplified Book. The main purpose of my book is to build an intuitive
understanding of how algorithms work through basic examples. In order to understand the presented material,
it is enough to know basic mathematics and linear algebra.
After reading this book, you will know the basics of supervised learning, understand complex mathematical models, understand the entire pipeline of a typical ML project, and also be able to share your knowledge with colleagues from related industries and with technical
professionals.
And for those who find the theoretical part not enough - I supplemented the book with a repository on GitHub,
which has Python implementation of every method and algorithm that I describe in each chapter.
You can read the book absolutely free at the link below:
-> https://themlsbook.com
I’ve also started my Instagram page - feel free to subscribe! it’s mostly in Russian but I’ll be posting in English too.
-> https://instagram.com/5x12
👍1
KG Inductive Link Prediction Challenge (ILPC) 2022
Github: https://github.com/pykeen/ilpc2022
Paper: https://github.com/pykeen/ilpc2022
@ArtificialIntelligencedl
Github: https://github.com/pykeen/ilpc2022
Paper: https://github.com/pykeen/ilpc2022
@ArtificialIntelligencedl
👍1