🔝 Omnivore: A Single Model for Many Visual Modalities
Github: https://github.com/facebookresearch/omnivore
Code: https://github.com/facebookresearch/omnivore/blob/main/inference_tutorial.ipynb
Paper: https://arxiv.org/abs/2201.08377
Dataset: https://paperswithcode.com/dataset/epic-kitchens-100
@ArtificialIntelligencedl
Github: https://github.com/facebookresearch/omnivore
Code: https://github.com/facebookresearch/omnivore/blob/main/inference_tutorial.ipynb
Paper: https://arxiv.org/abs/2201.08377
Dataset: https://paperswithcode.com/dataset/epic-kitchens-100
@ArtificialIntelligencedl
Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild with Pose Annotations
Github: https://github.com/google-research-datasets/Objectron
Code: https://github.com/facebookresearch/omnivore/blob/main/inference_tutorial.ipynb
Paper: https://arxiv.org/pdf/2012.09988v1.pdf
Dataset: https://paperswithcode.com/dataset/objectron
@ArtificialIntelligencedl
Github: https://github.com/google-research-datasets/Objectron
Code: https://github.com/facebookresearch/omnivore/blob/main/inference_tutorial.ipynb
Paper: https://arxiv.org/pdf/2012.09988v1.pdf
Dataset: https://paperswithcode.com/dataset/objectron
@ArtificialIntelligencedl
Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild with Pose Annotations
Github: https://github.com/bobetocalo/bobetocalo_pami20
Paper: https://arxiv.org/pdf/2202.02299v1.pdf
Dataset: https://paperswithcode.com/dataset/aflw
@ArtificialIntelligencedl
Github: https://github.com/bobetocalo/bobetocalo_pami20
Paper: https://arxiv.org/pdf/2202.02299v1.pdf
Dataset: https://paperswithcode.com/dataset/aflw
@ArtificialIntelligencedl
7️⃣ Steps to Mastering Machine Learning with Python in 2022
https://www.kdnuggets.com/2022/02/7-steps-mastering-machine-learning-python.html
@ArtificialIntelligencedl
https://www.kdnuggets.com/2022/02/7-steps-mastering-machine-learning-python.html
@ArtificialIntelligencedl
📱 Best it channels in telegram
https://t.iss.one/ai_machinelearning_big_data - best ml channel
https://t.iss.one/ArtificialIntelligencedl - ai
https://t.iss.one/pythonl - largest python channel
https://t.iss.one/pro_python_code - python ru
https://t.iss.one/datascienceiot - ds, ml free books
https://t.iss.one/programming_books_it
https://t.iss.one/pythonlbooks - python books
https://t.iss.one/javascriptv - javascript channel
https://t.iss.one/about_javascript - advanced js
https://t.iss.one/JavaScript_testit - js tests
https://t.iss.one/Golang_google - Go channel
https://t.iss.one/golangl. -golang chat
https://t.iss.one/golang_jobsgo -golang jobs
https://t.iss.one/neural - neural nets
https://t.iss.one/hashdev - web development
https://t.iss.one/htmlcssjavas - web
https://t.iss.one/hr_itwork - jobs
https://t.iss.one/linux_kal - kali linux
https://t.iss.one/machinee_learning - ml chat
https://t.iss.one/linuxkalii - linux chat
https://t.iss.one/machinelearning_ru - ml ru
https://t.iss.one/python_testit - python tests
https://t.iss.one/csharp_ci- c#
https://t.iss.one/Machinelearningtest - machine learning test
https://t.iss.one/ai_machinelearning_big_data - best ml channel
https://t.iss.one/ArtificialIntelligencedl - ai
https://t.iss.one/pythonl - largest python channel
https://t.iss.one/pro_python_code - python ru
https://t.iss.one/datascienceiot - ds, ml free books
https://t.iss.one/programming_books_it
https://t.iss.one/pythonlbooks - python books
https://t.iss.one/javascriptv - javascript channel
https://t.iss.one/about_javascript - advanced js
https://t.iss.one/JavaScript_testit - js tests
https://t.iss.one/Golang_google - Go channel
https://t.iss.one/golangl. -golang chat
https://t.iss.one/golang_jobsgo -golang jobs
https://t.iss.one/neural - neural nets
https://t.iss.one/hashdev - web development
https://t.iss.one/htmlcssjavas - web
https://t.iss.one/hr_itwork - jobs
https://t.iss.one/linux_kal - kali linux
https://t.iss.one/machinee_learning - ml chat
https://t.iss.one/linuxkalii - linux chat
https://t.iss.one/machinelearning_ru - ml ru
https://t.iss.one/python_testit - python tests
https://t.iss.one/csharp_ci- c#
https://t.iss.one/Machinelearningtest - machine learning test
A Novel Plug-in Module for Fine-Grained Visual Classification
Github: https://github.com/chou141253/fgvc-pim
Paper: https://arxiv.org/abs/2202.03822
Dataset: https://paperswithcode.com/dataset/nabirds
@ArtificialIntelligencedl
Github: https://github.com/chou141253/fgvc-pim
Paper: https://arxiv.org/abs/2202.03822
Dataset: https://paperswithcode.com/dataset/nabirds
@ArtificialIntelligencedl
Weakly-Supervised Semantic Segmentation with Visual Words Learning and Hybrid Pooling
Github: https://github.com/rulixiang/vwe/tree/master/v2
Paper: https://arxiv.org/abs/2202.04812v1
Dataset: https://paperswithcode.com/dataset/pascal-voc
@ArtificialIntelligencedl
Github: https://github.com/rulixiang/vwe/tree/master/v2
Paper: https://arxiv.org/abs/2202.04812v1
Dataset: https://paperswithcode.com/dataset/pascal-voc
@ArtificialIntelligencedl
Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging
Github: https://github.com/aangelopoulos/im2im-uq
Paper: https://arxiv.org/abs/2202.05265v1
Dataset: https://paperswithcode.com/dataset/fastmri
@ArtificialIntelligencedl
Github: https://github.com/aangelopoulos/im2im-uq
Paper: https://arxiv.org/abs/2202.05265v1
Dataset: https://paperswithcode.com/dataset/fastmri
@ArtificialIntelligencedl
The Shapley Value in Machine Learning
Github: https://github.com/benedekrozemberczki/shapley
Documentation: https://shapley.readthedocs.io/
Paper: https://arxiv.org/abs/2101.02153
Help: https://shapley.readthedocs.io/en/latest/notes/resources.html
@ArtificialIntelligencedl
Github: https://github.com/benedekrozemberczki/shapley
Documentation: https://shapley.readthedocs.io/
Paper: https://arxiv.org/abs/2101.02153
Help: https://shapley.readthedocs.io/en/latest/notes/resources.html
@ArtificialIntelligencedl
3 февраля – 3 апреля участвуйте в соревновании Data Fusion Contest 2022 от ВТБ с призовым фондом в 2 000 000 рублей!
Прокачайтесь в современном индустриальном ML на прорывной задаче матчинга.
Вас ждёт 3 задачи, 2 специальные номинации и уникальный датасет от ВТБ, «Ростелекома» и Platforma.
Data Fusion Contest 2022 — это отличная возможность:
🔹 Принять участие в большом онлайн-соревновании с крупными призовыми
🔹 Прокачаться в DS/ML и новых методах на практической задаче
🔹 Участвовать в митапах, воркшопах и гостевых лекциях
🔹 Выиграть классный мерч
Подробности и регистрация — на сайте.
Прокачайтесь в современном индустриальном ML на прорывной задаче матчинга.
Вас ждёт 3 задачи, 2 специальные номинации и уникальный датасет от ВТБ, «Ростелекома» и Platforma.
Data Fusion Contest 2022 — это отличная возможность:
🔹 Принять участие в большом онлайн-соревновании с крупными призовыми
🔹 Прокачаться в DS/ML и новых методах на практической задаче
🔹 Участвовать в митапах, воркшопах и гостевых лекциях
🔹 Выиграть классный мерч
Подробности и регистрация — на сайте.
🔹 Expediting Vision Transformers via Token Reorganizations
Github: https://github.com/youweiliang/evit
Paper: https://arxiv.org/abs/2202.07800v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
Github: https://github.com/youweiliang/evit
Paper: https://arxiv.org/abs/2202.07800v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
🔦 cosFormer: Rethinking Softmax in Attention
Github: https://github.com/davidsvy/cosformer-pytorch
Paper: https://arxiv.org/abs/2202.08791v1
@ArtificialIntelligencedl
Github: https://github.com/davidsvy/cosformer-pytorch
Paper: https://arxiv.org/abs/2202.08791v1
@ArtificialIntelligencedl
🛠 ZeroGen: Efficient Zero-shot Learning via Dataset Generation
Github: https://github.com/jiacheng-ye/zerogen
Paper: https://arxiv.org/abs/2202.07922v1
Dataset: https://paperswithcode.com/dataset/sst
@ArtificialIntelligencedl
Github: https://github.com/jiacheng-ye/zerogen
Paper: https://arxiv.org/abs/2202.07922v1
Dataset: https://paperswithcode.com/dataset/sst
@ArtificialIntelligencedl
TransCG: A Large-Scale Real-World Dataset for Transparent Object Depth Completion and Grasping
Github: https://github.com/galaxies99/transcg
Paper: https://arxiv.org/pdf/2202.08471v1.pdf
Dataset: https://graspnet.net/transcg
@ArtificialIntelligencedl
Github: https://github.com/galaxies99/transcg
Paper: https://arxiv.org/pdf/2202.08471v1.pdf
Dataset: https://graspnet.net/transcg
@ArtificialIntelligencedl
GitHub
GitHub - Galaxies99/TransCG: TransCG: A Large-Scale Real-World Dataset for Transparent Object Depth Completion and A Grasping Baseline
TransCG: A Large-Scale Real-World Dataset for Transparent Object Depth Completion and A Grasping Baseline - GitHub - Galaxies99/TransCG: TransCG: A Large-Scale Real-World Dataset for Transparent Ob...
Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization
Github: https://github.com/rail-berkeley/design-bench
Paper: https://arxiv.org/abs/2202.08450v1
Dataset: https://paperswithcode.com/dataset/openai-gym
@ArtificialIntelligencedl
Github: https://github.com/rail-berkeley/design-bench
Paper: https://arxiv.org/abs/2202.08450v1
Dataset: https://paperswithcode.com/dataset/openai-gym
@ArtificialIntelligencedl
PointSCNet: Point Cloud Structure and Correlation Learning Based on Space Filling Curve-Guided Sampling
Github: https://github.com/Chenguoz/PointSCNet
Paper: https://arxiv.org/abs/2202.10251v1
Dataset: https://paperswithcode.com/dataset/modelnet
@ArtificialIntelligencedl
Github: https://github.com/Chenguoz/PointSCNet
Paper: https://arxiv.org/abs/2202.10251v1
Dataset: https://paperswithcode.com/dataset/modelnet
@ArtificialIntelligencedl
EIGNN: Efficient Infinite-Depth Graph Neural Networks
Github: https://github.com/liu-jc/eignn
Paper: https://arxiv.org/abs/2202.10720v1
Dataset: https://paperswithcode.com/dataset/ppi
@ArtificialIntelligencedl
Github: https://github.com/liu-jc/eignn
Paper: https://arxiv.org/abs/2202.10720v1
Dataset: https://paperswithcode.com/dataset/ppi
@ArtificialIntelligencedl
GitHub
GitHub - liu-jc/EIGNN: The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021) - liu-jc/EIGNN
Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation
Github: https://github.com/tzer-anonbot/tzer
Docs: https://tzer.readthedocs.io/en/latest/markdown/artifact.html
Paper: https://arxiv.org/abs/2202.09947v1
@ai_machinelearning_big_data
Github: https://github.com/tzer-anonbot/tzer
Docs: https://tzer.readthedocs.io/en/latest/markdown/artifact.html
Paper: https://arxiv.org/abs/2202.09947v1
@ai_machinelearning_big_data
GitHub
GitHub - Tzer-AnonBot/tzer: Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“. - Tzer-AnonBot/tzer
Bag Graph: Multiple Instance Learning using Bayesian Graph Neural Networks
Github: https://github.com/networkslab/baggraph
Paper: https://arxiv.org/abs/2202.11132v1
@ai_machinelearning_big_data
Github: https://github.com/networkslab/baggraph
Paper: https://arxiv.org/abs/2202.11132v1
@ai_machinelearning_big_data
✅ As-ViT: Auto-scaling Vision Transformers without Training
Github: https://github.com/vita-group/asvit
Paper: https://arxiv.org/abs/2202.11921v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
Github: https://github.com/vita-group/asvit
Paper: https://arxiv.org/abs/2202.11921v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ArtificialIntelligencedl
DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on Camera-LiDAR Fusion with Deep Association
Github: https://github.com/wangxiyang2022/DeepFusionMOT
Paper: https://arxiv.org/abs/2202.12100v1
Dataset: https://paperswithcode.com/dataset/kitti
@ArtificialIntelligencedl
Github: https://github.com/wangxiyang2022/DeepFusionMOT
Paper: https://arxiv.org/abs/2202.12100v1
Dataset: https://paperswithcode.com/dataset/kitti
@ArtificialIntelligencedl
👍1