Disentangling Disentanglement in Variational Autoencoders
Mathieu et al.: https://proceedings.mlr.press/v97/mathieu19a.html
#DeepLearning #VariationalAutoencoders #VAE
Mathieu et al.: https://proceedings.mlr.press/v97/mathieu19a.html
#DeepLearning #VariationalAutoencoders #VAE
PMLR
Disentangling Disentanglement in Variational Autoencoders
We develop a generalisation of disentanglement in variational autoencoders (VAEs)—decomposition of the latent representation—characterising it as the fulfilm...
MelNet: A Generative Model for Audio in the Frequency Domain
Sean Vasquez, Mike Lewis: https://arxiv.org/abs/1906.01083
Blog: https://sjvasquez.github.io/blog/melnet/
#ArtificialIntelligence #AudioProcessing #MachineLearning
Sean Vasquez, Mike Lewis: https://arxiv.org/abs/1906.01083
Blog: https://sjvasquez.github.io/blog/melnet/
#ArtificialIntelligence #AudioProcessing #MachineLearning
Welcome this Chinese DeepLearning Chip called “Tianjic”.
Paper: https://www.nature.com/articles/s41586-019-1424-8
It can run traditional deep learning code and also perform "neuromorophic" operations in the same circuitry.
Paper: https://www.nature.com/articles/s41586-019-1424-8
It can run traditional deep learning code and also perform "neuromorophic" operations in the same circuitry.
"Deep Boltzmann Machines"
Ruslan Salakhutdinov and Geoffrey Hinton : https://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
#BoltzmannMachines #DeepBoltzmannMachines #DeepLearning
Ruslan Salakhutdinov and Geoffrey Hinton : https://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
#BoltzmannMachines #DeepBoltzmannMachines #DeepLearning
CS231N: Convolutional Neural Networks for Visual Recognition
Stanford University School of Engineering : https://www.youtube.com/playlist?list=PLzUTmXVwsnXod6WNdg57Yc3zFx_f-RYsq
#ArtificialIntelligence #MachineLearning #NeuralNetworks
Stanford University School of Engineering : https://www.youtube.com/playlist?list=PLzUTmXVwsnXod6WNdg57Yc3zFx_f-RYsq
#ArtificialIntelligence #MachineLearning #NeuralNetworks
YouTube
CS231N 2017
Share your videos with friends, family, and the world
CS224N Natural Language Processing with Deep Learning
Stanford University School of Engineering
:
https://www.youtube.com/playlist?list=PLU40WL8Ol94IJzQtileLTqGZuXtGlLMP_
#NaturalLanguageProcessing #MachineLearning #DeepLearning
Stanford University School of Engineering
:
https://www.youtube.com/playlist?list=PLU40WL8Ol94IJzQtileLTqGZuXtGlLMP_
#NaturalLanguageProcessing #MachineLearning #DeepLearning
Build a self-driving for about $300 using a RasberryPi. 😊
https://towardsdatascience.com/deeppicar-part-1-102e03c83f2c
https://towardsdatascience.com/deeppicar-part-1-102e03c83f2c
Medium
DeepPiCar — Part 1: How to Build a Deep Learning, Self Driving Robotic Car on a Shoestring Budget
An overview of how to build a Raspberry Pi and TensorFlow powered self driving robotic car
Introduction to Reinforcement Learning
By DeepMind. YouTube: https://www.youtube.com/watch?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ&time_continue=5&v=2pWv7GOvuf0
#deeplearning #artificialintelligence #reinforcementlearning
By DeepMind. YouTube: https://www.youtube.com/watch?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ&time_continue=5&v=2pWv7GOvuf0
#deeplearning #artificialintelligence #reinforcementlearning
YouTube
RL Course by David Silver - Lecture 1: Introduction to Reinforcement Learning
#Reinforcement Learning Course by David Silver# Lecture 1: Introduction to Reinforcement Learning
#Slides and more info about the course: https://goo.gl/vUiyjq
#Slides and more info about the course: https://goo.gl/vUiyjq
Tutorial on Graph Neural Networks for Computer Vision and Beyond (Part 1)
https://medium.com/@BorisAKnyazev/tutorial-on-graph-neural-networks-for-computer-vision-and-beyond-part-1-3d9fada3b80d
https://medium.com/@BorisAKnyazev/tutorial-on-graph-neural-networks-for-computer-vision-and-beyond-part-1-3d9fada3b80d
Medium
Tutorial on Graph Neural Networks for Computer Vision and Beyond (Part 1)
I’m answering questions that AI/ML/CV people not familiar with graphs or graph neural networks typically ask. I provide PyTorch examples …
NeurIPS 2019 : Disentanglement Challenge
Blog by Max Planck Institute for Intelligent Systems: https://www.aicrowd.com/challenges/neurips-2019-disentanglement-challenge
#DeepLearning #Disentanglement #NeurIPS #NeurIPS2019
Blog by Max Planck Institute for Intelligent Systems: https://www.aicrowd.com/challenges/neurips-2019-disentanglement-challenge
#DeepLearning #Disentanglement #NeurIPS #NeurIPS2019
AIcrowd | NeurIPS 2019 : Disentanglement Challenge | Challenges
Disentanglement: from simulation to real-world
New Frontiers of Automated Mechanism Design for Pricing and Auctions by Maria-Florina Balcan, @mldcmu, Tuomas Sandholm, Ellen Vitercik @csdatcmu
Learn more → https://mld.ai/y1m
Tutorial Video Part I: https://youtu.be/buK3KXZcGAI
Tutorial Video Part II: https://youtu.be/T8gaK4Yw4zI
#MechanismDesign #GameTheory #Tutorial #MachineLearning #Optimization #ML
Learn more → https://mld.ai/y1m
Tutorial Video Part I: https://youtu.be/buK3KXZcGAI
Tutorial Video Part II: https://youtu.be/T8gaK4Yw4zI
#MechanismDesign #GameTheory #Tutorial #MachineLearning #Optimization #ML
Google
EC19 New Frontiers of Automated Mechanism Design for Pricing and Auctions
We just released a high-performance graph embedding system called GraphVite, which supports a variety of applications including node embeddings, knowledge graph embeddings and graph&high-dimensional data visualization. It is super fast, which only takes around one minute to learn node embebeddings for a graph with one million node. We benchmarked a variety of models including DeepWalk, LINE, node2vec, TransE, DistMult, ComplEx, SimplE, RotatE, LargeVis... More information is available at: https://graphvite.io/
GraphVite
A general and high-performance graph embedding system for various applications Designed for CPU-GPU hybrid architecture
"Automating Inference, Learning, and Design using Probabilistic Programming"
Tom Rainforth, Wolfson College, University of Oxford : https://www.robots.ox.ac.uk/~twgr/assets/pdf/rainforth2017thesis.pdf
#ProbabilisticProgramming #MonteCarloinference #MarkovChainMonteCarlo
Tom Rainforth, Wolfson College, University of Oxford : https://www.robots.ox.ac.uk/~twgr/assets/pdf/rainforth2017thesis.pdf
#ProbabilisticProgramming #MonteCarloinference #MarkovChainMonteCarlo
SLIDES
Beyond Domain Randomization
Josh Tobin
https://josh-tobin.com/assets/pdf/BeyondDomainRandomization_Tobin_RSS19.pdf
Paper: Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World
https://arxiv.org/pdf/1703.06907.pdf
Beyond Domain Randomization
Josh Tobin
https://josh-tobin.com/assets/pdf/BeyondDomainRandomization_Tobin_RSS19.pdf
Paper: Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World
https://arxiv.org/pdf/1703.06907.pdf
Learning to Train with Synthetic Humans
https://arxiv.org/pdf/1908.00967.pdf
https://arxiv.org/pdf/1908.00967.pdf