AI with Papers - Artificial Intelligence & Deep Learning
15.2K subscribers
135 photos
247 videos
14 files
1.31K links
All the AI with papers. Every day fresh updates about #DeepLearning, #MachineLearning, LLMs and #ComputerVision

Curated by Alessandro Ferrari | https://www.linkedin.com/in/visionarynet/

#artificialintelligence #machinelearning #ml #AI
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🐦 EfficientVIS: new SOTA for VIS 🐦

πŸ‘‰Simultaneous classification, segmentation, and tracking multiple object instances in videos

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Efficient and fully end-to-end
βœ…Iterative query-video interaction
βœ…First RoI-wise clip-level RT-VIS
βœ…Requires 15Γ— fewer epochs

More: https://bit.ly/3KfqurN
πŸ‘10πŸ”₯3πŸ‘Ž1🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
🐠#AI-clips from single frame🐠

πŸ‘‰Moving objects in #3D while generating a video by a sequence of desired actions

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…A playable environments
βœ…A single starting image🀯
βœ…Controllable camera
βœ…Unsupervised learning

More: https://bit.ly/35VDrYO
❀3πŸ‘1🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
🧊Kubric: AI dataset generator🧊

πŸ‘‰Open-source #Python framework for photo-realistic scenes: full control, rich annotations, TBs of fresh data 🀯

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Synthetic datasets with GT
βœ…From NeRF to optical flow
βœ…Full control over data
βœ…Ok privacy & licensing
βœ…Apache License 2.0

More: https://bit.ly/3hQCaFs
πŸ”₯6πŸ‘1🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
πŸͺ‚Β΅Transfer for enormous NNs πŸͺ‚

πŸ‘‰Microsoft unveils how to tune enormous neural networks

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…New HP tuning: Β΅Transfer
βœ…Zero-shot transfer to full-model
βœ…Outperforming BERT-large
βœ…Outperforming 6.7B GPT-3
βœ…Code under MIT license

More: https://bit.ly/3qc37Ij
πŸ”₯2🀯2❀1
This media is not supported in your browser
VIEW IN TELEGRAM
🐧Semantic via only text supervision🐧

πŸ‘‰GroupViT with a text encoder on a large-scale image-text dataset: semantic with any pixel-level annotations in training!

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Hierarc. Grouping Vision Transf.
βœ…Additional text encoder
βœ…NO pixel-level annotations
βœ…Semantic-seg task via zero-shot
βœ…Source code available soon

More:https://bit.ly/3hPGeWr
πŸ‘6πŸ₯°1🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
⌚4D-Net: Lidar + RGB synchronization⌚

πŸ‘‰Google unveils 4D-Net to combine 3D LiDAR and onboard RGB camera

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Point clouds/images in time
βœ…Fusing multiple modalities in 4D
βœ…Novel sampling for 3D P.C. in time
βœ…New SOTA for 3D detection

More: https://bit.ly/3hZCFwN
πŸ‘12πŸ”₯2🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
🐌 New SOTA in video synthesis! 🐌

πŸ‘‰Snap unveils a novel multimodal video generation framework via text/images

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Multimodal video generation
βœ…Bidirectional transformer
βœ…Video token with self-learn.
βœ…Text augmentation for robustness
βœ…Longer sequence synthesis

More: https://bit.ly/3hZLXsG
🀯4πŸ‘1πŸ”₯1πŸ‘1
This media is not supported in your browser
VIEW IN TELEGRAM
🎁 StyelNeRF source code is out 🎁

πŸ‘‰3D consistent photo-realistic image synthesis

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…NeRF + style generator
βœ…3D consistency for HD image
βœ…Novel regularization loss
βœ…Camera control on styles

More: https://bit.ly/3t5xC49
πŸ”₯4πŸ₯°1🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
🦎CLD-based generative #AI by #Nvidia🦎

πŸ‘‰Nvidia unveils a novel critically-damped Langevin diffusion (CLD) for synthetic data

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…A novel diffusion process for SGMs
βœ…Novel score matching obj. for CLD
βœ…Hybrid denoising score matching
βœ…Efficient sampling from CLD model
βœ…Source code under a specific license

More: https://bit.ly/35MToBe
πŸ”₯2🀩2πŸ‘1🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
πŸ›ΈUFO: segmentation @140+ FPSπŸ›Έ

πŸ‘‰Unified Transformer Framework for Co-Segmentation, Co-Saliency & Salient Object Detection. All in one!

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Unified framework for co-segmentation
βœ…Co-segmentation, co-saliency, saliency
βœ…Block for long-range dependencies
βœ…Able to reach for 140 FPS in inference
βœ…The new SOTA on multiple datasets
βœ…Source code under MIT License

More: https://bit.ly/3KLd9b9
πŸ”₯6πŸ‘1🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
πŸ‘— Multi-GANs fashion πŸ‘—

πŸ‘‰Global GAN blended with other GANs for faces, shoes, etc.

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Multi-GAN framework
βœ…Several generators
βœ…Free of artifacts
βœ…Full-body generation
βœ…Humans, 1024x1024

More: https://bit.ly/37mfOte
πŸ”₯2πŸ‘2❀1🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
🚧 FLAG: #3D Avatar Generation 🚧

πŸ‘‰A flow-based generative model of the 3D human body from sparse observations.

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…FLow-based Avatar Generative
βœ…Conditional distro of body pose
βœ…Exact pose likelihood process
βœ…Invertibility -> oracle latent code

More: https://bit.ly/3CQpk3p
πŸ‘2πŸ”₯1🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
πŸ’ƒ Dancing in the wild with StyleGAN πŸ’ƒ

πŸ‘‰StyleGAN-based animations for AR/VR apps

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Video based motion retargeting
βœ…A StyleGAN architecture based
βœ…Novel explicit motion representation
βœ…SOTA qualitatively & quantitatively

More: https://bit.ly/3CZbL1W
πŸ‘6🀯3πŸ₯°2
This media is not supported in your browser
VIEW IN TELEGRAM
πŸͺ€TensoRF: the 4D evolution of NeRF πŸͺ€

πŸ‘‰TensoRF, a novel radiance fields via 4D-tensor: 3D voxel grid with per-voxel multi-channel feats.

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…VM decomposition technique
βœ…Low-rank tensor factorization
βœ…Lower memory footprint (speed)
βœ…TensoRF is the new SOTA in R.F.
βœ…Code under the MIT License

More: https://bit.ly/3qffZgI
πŸ‘2πŸ”₯1
This media is not supported in your browser
VIEW IN TELEGRAM
πŸ”Ό GAN-meshes without key-points πŸ”Ό

πŸ‘‰ETH unveils a GAN framework for generating textured triangle meshes without annotations

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Generative of textured meshes
βœ…3D generator for all categories
βœ…3D pose estimation framework
βœ…Code licensed under MIT License

More: https://bit.ly/3qfH9nJ
🀩3🀯2πŸ‘1πŸ”₯1
This media is not supported in your browser
VIEW IN TELEGRAM
🐯 S.S. Latent Image Animator 🐯

πŸ‘‰Self-supervised autoencoder to animate unseen images by linear navigation in latent

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Latent Image Animator
βœ…Linear displacement in latent
βœ…SOTA: VoxCeleb, Taichi, TED-talk
βœ…Source code (soon) available

More: https://bit.ly/36pgLAC
πŸ‘5πŸ”₯3🀯2πŸ’©1
This media is not supported in your browser
VIEW IN TELEGRAM
πŸͺ¨ Google URF for neural-synthesis πŸͺ¨

πŸ‘‰Sequence of RGB + Lidar -> 3D surfaces and novel RGB images synthesized

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Extending Neural Radiance Fields
βœ…Leveraging asynch. lidar data
βœ…Addressing exposure variation
βœ…Leveraging segmentations for sky
βœ…SOTA #3D reconstructions/synthesizes

More: https://bit.ly/3L2vTDb
πŸ”₯11πŸ‘4πŸ‘1🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
πŸš› AV2: next-gen. self driving πŸš›

πŸ‘‰One of the biggest dataset ever for #autonomousdriving

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…1k seq. of multimodal data
βœ…3D annotations, 26 categories
βœ…20k lidar & map-aligned pose
βœ…250k challenging interactions
βœ…HD Map: 3D lane & crosswalk
βœ…CC BY-NC-SA 4.0 license

More: https://bit.ly/3trx3lw
πŸ”₯3πŸ‘1🀯1
This media is not supported in your browser
VIEW IN TELEGRAM
πŸ€–CaTGrasp in Clutter from SimulationπŸ€–

πŸ‘‰Task-relevant grasping: trained solely in simulation with synthetic + SS. hand-object interaction

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Novel cat-level, relevant grasping
βœ…S.S. hand-object-contact
βœ…Tiny objects from dense clutter
βœ…Train-simulation -> to real
βœ…Source code under Apache 2.0

More: https://bit.ly/3L2YVCo
πŸ‘1πŸ”₯1
This media is not supported in your browser
VIEW IN TELEGRAM
πŸ›Ό Drive & Segment without Supervision πŸ›Ό

πŸ‘‰Learning pixel-wise semantic seg. on non-curated data collection by cars (cameras + LiDAR) driving around a city

𝐇𝐒𝐠𝐑π₯𝐒𝐠𝐑𝐭𝐬:
βœ…Cross-modal unsupervised
βœ…Synchronized LiDAR & RGB
βœ…Object proposal on LiDAR points
βœ…SOTA, significant improvements

More: https://bit.ly/3L0wWTW
πŸ‘3πŸ”₯1🀯1